Suppr超能文献

一种利用纹理特征在超声检查中鉴别甲状腺结节性质的模型。

A Model Using Texture Features to Differentiate the Nature of Thyroid Nodules on Sonography.

作者信息

Song Gesheng, Xue Fuzhong, Zhang Chengqi

机构信息

School of Medicine (G.S.), and Department of Epidemiology and Biostatistics, School of Public Health (F.X.), Shandong University, Jinan, China; and Health Management Center, Shandong Provincial Qianfoshan Hospital, Jinan, China (C.Z.).

出版信息

J Ultrasound Med. 2015 Oct;34(10):1753-60. doi: 10.7863/ultra.15.14.10045. Epub 2015 Aug 25.

Abstract

OBJECTIVES

To evaluate the use of texture-based gray-level co-occurrence matrix (GLCM) features extracted from thyroid sonograms in building prediction models to determine the nature of thyroid nodules.

METHODS

A GLCM was used to extract the texture features of 155 sonograms of thyroid nodules (76 benign and 79 malignant). The GLCM features included energy, contrast, correlation, sum of squares, inverse difference moment, sum average, sum variance, sum entropy, entropy, difference variance, difference entropy, information measures of correlation, and maximal correlation coefficient. The texture features extracted by the GLCM were used to build 6 different statistical models, including support vector machine, random tree, random forest, boost, logistic, and artificial neural network models. The models' performances were evaluated by 10-fold cross-validation combining a receiver operating characteristic curve, indices of accuracy, true-positive rate, false-positive rate, sensitivity, specificity, precision, recall, F-measure, and area under the receiver operating characteristic curve. External validation was used to examine the stability of the model that showed the best performance.

RESULTS

The logistic model showed the best performance, according to 10-fold cross-validation, among the 6 models, with the highest area under the curve (0.84), accuracy (78.5%), true-positive rate (0.785), sensitivity (0.789), specificity (0.785), precision (0.789), recall (0.785), and F-measure (0.784), as well as the lowest false-positive rate (0.215). The external validation results showed that the logistic model was stable.

CONCLUSIONS

Gray-level co-occurrence matrix texture features extracted from sonograms of thyroid nodules coupled with a logistic model are useful for differentiating between benign and malignant thyroid nodules.

摘要

目的

评估从甲状腺超声图像中提取的基于纹理的灰度共生矩阵(GLCM)特征在构建预测模型以确定甲状腺结节性质方面的应用。

方法

使用GLCM提取155个甲状腺结节超声图像(76个良性和79个恶性)的纹理特征。GLCM特征包括能量、对比度、相关性、平方和、逆差矩、和均值、和方差、和熵、熵、差方差、差熵、相关性信息测度和最大相关系数。通过GLCM提取的纹理特征用于构建6种不同的统计模型,包括支持向量机、随机树、随机森林、提升、逻辑回归和人工神经网络模型。通过10折交叉验证结合受试者工作特征曲线、准确率、真阳性率、假阳性率、敏感性、特异性、精确率、召回率、F值和受试者工作特征曲线下面积来评估模型性能。使用外部验证来检验表现最佳的模型的稳定性。

结果

根据10折交叉验证,在6种模型中,逻辑回归模型表现最佳,曲线下面积最高(0.84),准确率(78.5%)、真阳性率(0.785)、敏感性(0.789)、特异性(0.785)、精确率(0.789)、召回率(0.785)和F值(0.784)最高,假阳性率最低(0.215)。外部验证结果表明逻辑回归模型稳定。

结论

从甲状腺结节超声图像中提取的灰度共生矩阵纹理特征结合逻辑回归模型有助于区分甲状腺结节的良恶性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验