Suppr超能文献

基于机器学习技术的甲状腺结节超声图像分类。

Ultrasound Image Classification of Thyroid Nodules Using Machine Learning Techniques.

机构信息

School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland.

Health Innovation Via Engineering Laboratory, Cúram SFI Research Centre for Medical Devices, Lambe Institute for Translational Research, National University of Ireland Galway, H91 TK33 Galway, Ireland.

出版信息

Medicina (Kaunas). 2021 May 24;57(6):527. doi: 10.3390/medicina57060527.

Abstract

: Thyroid nodules are lumps of solid or liquid-filled tumors that form inside the thyroid gland, which can be malignant or benign. Our aim was to test whether the described features of the Thyroid Imaging Reporting and Data System (TI-RADS) could improve radiologists' decision making when integrated into a computer system. In this study, we developed a computer-aided diagnosis system integrated into multiple-instance learning (MIL) that would focus on benign-malignant classification. Data were available from the Universidad Nacional de Colombia. : There were 99 cases (33 Benign and 66 malignant). In this study, the median filter and image binarization were used for image pre-processing and segmentation. The grey level co-occurrence matrix (GLCM) was used to extract seven ultrasound image features. These data were divided into 87% training and 13% validation sets. We compared the support vector machine (SVM) and artificial neural network (ANN) classification algorithms based on their accuracy score, sensitivity, and specificity. The outcome measure was whether the thyroid nodule was benign or malignant. We also developed a graphic user interface (GUI) to display the image features that would help radiologists with decision making. : ANN and SVM achieved an accuracy of 75% and 96% respectively. SVM outperformed all the other models on all performance metrics, achieving higher accuracy, sensitivity, and specificity score. : Our study suggests promising results from MIL in thyroid cancer detection. Further testing with external data is required before our classification model can be employed in practice.

摘要

甲状腺结节是指在甲状腺内形成的固体或充满液体的肿瘤肿块,可能是恶性的,也可能是良性的。我们的目的是测试甲状腺成像报告和数据系统(TI-RADS)中描述的特征是否可以通过集成到计算机系统中,从而改善放射科医生的决策。在这项研究中,我们开发了一个集成到多实例学习(MIL)中的计算机辅助诊断系统,该系统将专注于良恶性分类。该数据可从哥伦比亚国立大学获得。有 99 个病例(33 个良性和 66 个恶性)。在这项研究中,使用中值滤波器和图像二值化进行图像预处理和分割。使用灰度共生矩阵(GLCM)提取七个超声图像特征。这些数据分为 87%的训练集和 13%的验证集。我们比较了支持向量机(SVM)和人工神经网络(ANN)分类算法的准确性评分、敏感性和特异性。结果衡量标准是甲状腺结节是良性还是恶性。我们还开发了一个图形用户界面(GUI)来显示图像特征,以帮助放射科医生做出决策。ANN 和 SVM 的准确率分别为 75%和 96%。在所有性能指标上,SVM 都优于所有其他模型,实现了更高的准确性、敏感性和特异性评分。我们的研究表明,多实例学习在甲状腺癌检测中具有有前景的结果。在我们的分类模型可以实际应用之前,还需要用外部数据进行进一步的测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71d1/8225215/24b2c2655111/medicina-57-00527-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验