Cleere Eoin F, Davey Matthew G, O'Neill Shane, Corbett Mel, O'Donnell John P, Hacking Sean, Keogh Ivan J, Lowery Aoife J, Kerin Michael J
The Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland.
Department of Otolaryngology, Galway University Hospitals, H91 YR71 Galway, Ireland.
Diagnostics (Basel). 2022 Mar 24;12(4):794. doi: 10.3390/diagnostics12040794.
Background: Despite investigation, 95% of thyroid nodules are ultimately benign. Radiomics is a field that uses radiological features to inform individualized patient care. We aimed to evaluate the diagnostic utility of radiomics in classifying undetermined thyroid nodules into benign and malignant using ultrasonography (US). Methods: A diagnostic test accuracy systematic review and meta-analysis was performed in accordance with PRISMA guidelines. Sensitivity, specificity, and area under curve (AUC) delineating benign and malignant lesions were recorded. Results: Seventy-five studies including 26,373 patients and 46,175 thyroid nodules met inclusion criteria. Males accounted for 24.6% of patients, while 75.4% of patients were female. Radiomics provided a pooled sensitivity of 0.87 (95% CI: 0.86−0.87) and a pooled specificity of 0.84 (95% CI: 0.84−0.85) for characterizing benign and malignant lesions. Using convolutional neural network (CNN) methods, pooled sensitivity was 0.85 (95% CI: 0.84−0.86) and pooled specificity was 0.82 (95% CI: 0.82−0.83); significantly lower than studies using non-CNN: sensitivity 0.90 (95% CI: 0.89−0.90) and specificity 0.88 (95% CI: 0.87−0.89) (p < 0.05). The diagnostic ability of radiologists and radiomics were comparable for both sensitivity (OR 0.98) and specificity (OR 0.95). Conclusions: Radiomic analysis using US provides a reproducible, reliable evaluation of undetermined thyroid nodules when compared to current best practice.
尽管经过检查,95%的甲状腺结节最终被证明是良性的。放射组学是一个利用放射学特征为个体化患者护理提供信息的领域。我们旨在评估放射组学在使用超声(US)将未确定的甲状腺结节分类为良性和恶性方面的诊断效用。方法:根据PRISMA指南进行了一项诊断试验准确性的系统评价和荟萃分析。记录了区分良性和恶性病变的敏感性、特异性和曲线下面积(AUC)。结果:75项研究,包括26373例患者和46175个甲状腺结节符合纳入标准。男性占患者的24.6%,而75.4%的患者为女性。放射组学在表征良性和恶性病变方面的合并敏感性为0.87(95%CI:0.86 - 0.87),合并特异性为0.84(95%CI:0.84 - 0.85)。使用卷积神经网络(CNN)方法,合并敏感性为0.85(95%CI:0.84 - 0.86),合并特异性为0.82(95%CI:0.82 - 0.83);显著低于使用非CNN的研究:敏感性0.90(95%CI:0.89 - 0.90)和特异性0.88(95%CI:0.87 - 0.89)(p < 0.05)。放射科医生和放射组学的诊断能力在敏感性(OR 0.98)和特异性(OR 0.95)方面具有可比性。结论:与当前最佳实践相比,使用超声的放射组学分析为未确定的甲状腺结节提供了可重复、可靠的评估。