Wu Mingquan, Huang Wenjiang, Niu Zheng, Wang Changyao
The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China.
Laboratory of Digital Earth Sciences, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China.
Int J Environ Res Public Health. 2015 Aug 20;12(8):9920-37. doi: 10.3390/ijerph120809920.
The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA.
卫星数据采集的局限性意味着缺乏用于环境过程监测的高空间和时间分辨率的卫星数据。在本研究中,我们通过应用增强型时空自适应反射率融合模型(ESTARFM)和时空数据融合方法(STDFA)来解决这一问题,即将环境卫星电荷耦合器件(HJ CCD)、高分一号卫星宽视场相机(GF-1 WFV)和中分辨率成像光谱仪(MODIS)数据相结合,以生成用于陆地表面过程监测的每日高空间分辨率合成数据。利用实际的HJ CCD和GF-1 WFV数据,采用相关分析方法评估合成图像的精度。我们的方法在中国新疆的两个研究区域进行了测试和验证。结果表明,ESTARFM和STDFA均可用于结合HJ CCD与MODIS反射率数据以及GF-1 WFV与MODIS反射率数据,以生成与实际数据紧密匹配的合成HJ CCD数据和合成GF-1 WFV数据,其相关系数(r)分别大于0.8989和0.8643。与STDFA生成的数据相比,ESTARFM生成的合成红波段和近红外(NIR)波段数据更适合用于计算归一化植被指数(NDVI)。