Suppr超能文献

基于 GF-1 和 HJ-1 数据的重金属胁迫水稻监测最优尺度的对比分析。

Comparative Analysis of GF-1 and HJ-1 Data to Derive the Optimal Scale for Monitoring Heavy Metal Stress in Rice.

机构信息

School of Information Engineering, China University of Geosciences, Beijing 100083, China.

出版信息

Int J Environ Res Public Health. 2018 Mar 6;15(3):461. doi: 10.3390/ijerph15030461.

Abstract

Remote sensing can actively monitor heavy metal contamination in crops, but with the increase of satellite sensors, the optimal scale for monitoring heavy metal stress in rice is still unknown. This study focused on identifying the optimal scale by comparing the ability to detect heavy metal stress in rice at various spatial scales. The 2 m, 8 m, and 16 m resolution GF-1 (China) data and the 30 m resolution HJ-1 (China) data were used to invert leaf area index (LAI). The LAI was the input parameter of the World Food Studies (WOFOST) model, and we obtained the dry weight of storage organs (WSO) and dry weight of roots (WRT) through the assimilation method; then, the mass ratio of rice storage organs and roots (SORMR) was calculated. Through the comparative analysis of SORMR at each spatial scale of data, we determined the optimal scale to monitor heavy metal stress in rice. The following conclusions were drawn: (1) SORMR could accurately and effectively monitor heavy metal stress; (2) the 8 m and 16 m images from GF-1 were suitable for monitoring heavy metal stress in rice; (3) 16 m was considered the optimal scale to assess heavy metal stress in rice.

摘要

遥感可以主动监测作物中的重金属污染,但随着卫星传感器的增加,监测水稻重金属胁迫的最佳尺度仍不清楚。本研究通过比较不同空间尺度下水稻重金属胁迫的检测能力,重点确定了最佳尺度。研究使用了 2 m、8 m 和 16 m 分辨率的 GF-1(中国)数据和 30 m 分辨率的 HJ-1(中国)数据来反演叶面积指数(LAI)。将 LAI 作为世界粮食研究(WOFOST)模型的输入参数,通过同化方法获得了储存器官的干重(WSO)和根的干重(WRT);然后,计算了水稻储存器官和根的质量比(SORMR)。通过对各数据空间尺度下 SORMR 的比较分析,确定了监测水稻重金属胁迫的最佳尺度。得出以下结论:(1)SORMR 可以准确有效地监测重金属胁迫;(2)GF-1 的 8 m 和 16 m 图像适用于监测水稻中的重金属胁迫;(3)16 m 被认为是评估水稻重金属胁迫的最佳尺度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7b9/5877006/07220b2e563d/ijerph-15-00461-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验