Palliotti Alberto, Tombesi Sergio, Frioni Tommaso, Silvestroni Oriana, Lanari Vania, D'Onofrio Claudio, Matarese Fabiola, Bellincontro Andrea, Poni Stefano
Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università di Perugia, Borgo XX Giugno 74, 06128 Perugia, Italy.
Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università di Perugia, Borgo XX Giugno 74, 06128 Perugia, Italy.
J Plant Physiol. 2015 Aug 1;185:84-92. doi: 10.1016/j.jplph.2015.07.007. Epub 2015 Jul 31.
Photosynthetic performances and energy dissipation mechanisms were evaluated on the anisohydric cv. Sangiovese and on the isohydric cv. Montepulciano (Vitis vinifera L.) under conditions of multiple summer stresses. Potted vines of both cultivars were maintained at 90% and 40% of maximum water availability from fruit-set to veraison. One week before veraison, at predawn and midday, main gas-exchange and chlorophyll fluorescence parameters, chlorophyll content, xanthophyll pool and cycle and catalase activity were evaluated. Under water deficit and elevated irradiance and temperature, contrary to cv. Montepulciano and despite a significant leaf water potential decrease, Sangiovese's leaves kept their stomata more open and continued to assimilate CO2 while also showing higher water use efficiency. Under these environmental conditions, in comparison with the isohydric cv. Montepulciano, the protective mechanisms of energy dissipation exerted by the anisohydric cv. Sangiovese were: (i) higher stomatal conductance and thermoregulation linked to higher transpiration rate; (ii) greater ability at dissipating more efficiently the excess energy via the xanthophylls cycle activity (thermal dissipation) due to higher VAZ pool and greater increase of de-epoxidation activity.
在多个夏季胁迫条件下,对非等水型品种桑娇维塞和等水型品种蒙特布查诺(葡萄属)的光合性能和能量耗散机制进行了评估。两个品种的盆栽葡萄从坐果到转色期分别维持在最大水分可利用量的90%和40%。在转色前一周,于黎明前和中午,对主要气体交换和叶绿素荧光参数、叶绿素含量、叶黄素库及循环以及过氧化氢酶活性进行了评估。在水分亏缺、光照增强和温度升高的情况下,与蒙特布查诺品种不同,尽管桑娇维塞叶片的水势显著降低,但其气孔保持更开放状态,继续同化二氧化碳,同时水分利用效率也更高。在这些环境条件下,与等水型品种蒙特布查诺相比,非等水型品种桑娇维塞发挥的能量耗散保护机制为:(i)与较高蒸腾速率相关的较高气孔导度和温度调节;(ii)由于较高的VAZ库和脱环氧化活性的更大增加,通过叶黄素循环活动(热耗散)更有效地耗散过剩能量的能力更强。