Suppr超能文献

纳米晶体超晶格中的取代掺杂。

Substitutional doping in nanocrystal superlattices.

机构信息

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.

出版信息

Nature. 2015 Aug 27;524(7566):450-3. doi: 10.1038/nature14872.

Abstract

Doping is a process in which atomic impurities are intentionally added to a host material to modify its properties. It has had a revolutionary impact in altering or introducing electronic, magnetic, luminescent, and catalytic properties for several applications, for example in semiconductors. Here we explore and demonstrate the extension of the concept of substitutional atomic doping to nanometre-scale crystal doping, in which one nanocrystal is used to replace another to form doped self-assembled superlattices. Towards this goal, we show that gold nanocrystals act as substitutional dopants in superlattices of cadmium selenide or lead selenide nanocrystals when the size of the gold nanocrystal is very close to that of the host. The gold nanocrystals occupy random positions in the superlattice and their density is readily and widely controllable, analogous to the case of atomic doping, but here through nanocrystal self-assembly. We also show that the electronic properties of the superlattices are highly tunable and strongly affected by the presence and density of the gold nanocrystal dopants. The conductivity of lead selenide films, for example, can be manipulated over at least six orders of magnitude by the addition of gold nanocrystals and is explained by a percolation model. As this process relies on the self-assembly of uniform nanocrystals, it can be generally applied to assemble a wide variety of nanocrystal-doped structures for electronic, optical, magnetic, and catalytic materials.

摘要

掺杂是一种将原子杂质有意添加到主体材料中以改变其性质的过程。它在改变或引入电子、磁性、发光和催化特性方面具有革命性的影响,例如在半导体中。在这里,我们探索并展示了将替代原子掺杂的概念扩展到纳米级晶体掺杂的方法,即在掺杂自组装超晶格中,一个纳米晶体被用来替代另一个纳米晶体。为此,我们证明了当金纳米晶体的尺寸非常接近主体时,金纳米晶体可以在硒化镉或硒化铅纳米晶体的超晶格中充当替代掺杂剂。金纳米晶体占据超晶格中的随机位置,其密度很容易且广泛可控,类似于原子掺杂的情况,但这里是通过纳米晶体自组装实现的。我们还表明,超晶格的电子性质具有高度可调性,并且受到金纳米晶体掺杂剂的存在和密度的强烈影响。例如,通过添加金纳米晶体,可以将硒化铅薄膜的电导率在至少六个数量级范围内进行调节,这可以通过渗流模型来解释。由于这个过程依赖于均匀纳米晶体的自组装,因此它可以广泛应用于组装各种纳米晶体掺杂结构,用于电子、光学、磁性和催化材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验