Sherman Zachary M, Milliron Delia J, Truskett Thomas M
Department of Chemical Engineering, University of Washington, 3781 Okanogan Lane, Seattle, Washington 98195, United States.
McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States.
ACS Nano. 2024 Aug 13;18(32):21347-21363. doi: 10.1021/acsnano.4c05803. Epub 2024 Aug 2.
Understanding how colloidal soft materials interact with light is crucial to the rational design of optical metamaterials. Electromagnetic simulations are computationally expensive and have primarily been limited to model systems described by a small number of particles-dimers, small clusters, and small periodic unit cells of superlattices. In this work we study the optical properties of bulk, disordered materials comprising a large number of plasmonic colloidal nanoparticles using Brownian dynamics simulations and the mutual polarization method. We investigate the far-field and near-field optical properties of both colloidal fluids and gels, which require thousands of nanoparticles to describe statistically. We show that these disordered materials exhibit a distribution of particle-level plasmonic resonance frequencies that determines their ensemble optical response. Nanoparticles with similar resonant frequencies form anisotropic and oriented clusters embedded within the otherwise isotropic and disordered microstructures. These collectively resonating morphologies can be tuned with the frequency and polarization of incident light. Knowledge of particle resonant distributions may help to interpret and compare the optical responses of different colloidal structures, correlate and predict optical properties, and rationally design soft materials for applications harnessing light.
了解胶体软材料与光的相互作用方式对于光学超材料的合理设计至关重要。电磁模拟计算成本高昂,并且主要限于由少量粒子(二聚体、小团簇和超晶格的小周期单元)描述的模型系统。在这项工作中,我们使用布朗动力学模拟和互极化方法研究了由大量等离子体胶体纳米粒子组成的块状无序材料的光学性质。我们研究了胶体流体和凝胶的远场和近场光学性质,这需要数千个纳米粒子才能进行统计描述。我们表明,这些无序材料表现出粒子级等离子体共振频率的分布,该分布决定了它们的整体光学响应。具有相似共振频率的纳米粒子形成嵌入在其他各向同性和无序微结构中的各向异性和定向团簇。这些集体共振形态可以通过入射光的频率和偏振进行调节。了解粒子共振分布可能有助于解释和比较不同胶体结构的光学响应、关联和预测光学性质,以及合理设计利用光的应用的软材料。