Errea Oihana, Moreno Beatriz, Gonzalez-Franquesa Alba, Garcia-Roves Pablo M, Villoslada Pablo
Center of Neuroimmunology, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Cellex Building, Laboratory 3A, Casanova 145, 08036, Barcelona, Spain.
Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), 08036, Barcelona, Spain.
J Neuroinflammation. 2015 Aug 28;12:152. doi: 10.1186/s12974-015-0375-8.
In brain inflammatory diseases, axonal damage is one of the most critical steps in the cascade that leads to permanent disability. Thus, identifying the initial events triggered by inflammation or oxidative stress that provoke axonal damage is critical for the development of neuroprotective therapies. Energy depletion due to mitochondrial dysfunction has been postulated as an important step in the damage of axons. This prompted us to study the effects of acute inflammation and oxidative stress on the morphology, transport, and function of mitochondria in axons.
Mouse cerebellar slice cultures were challenged with either lipopolysaccharide (LPS) or hydrogen peroxide (H2O2) ex vivo for 24 h. Axonal mitochondrial morphology was evaluated by transmission electron microscopy (TEM) and mitochondrial transportation by time-lapse imaging. In addition, mitochondrial function in the cerebellar slice cultures was analyzed through high-resolution respirometry assays and quantification of adenosine triphosphate (ATP) production.
Both conditions promoted an increase in the size and complexity of axonal mitochondria evident in electron microscopy images, suggesting a compensatory response. Such compensation was reflected at the tissue level as increased respiratory activity of complexes I and IV and as a transient increase in ATP production in response to acute inflammation. Notably, time-lapse microscopy indicated that mitochondrial transport (mean velocity) was severely impaired in axons, increasing the proportion of stationary mitochondria in axons after LPS challenge. Indeed, the two challenges used produced different effects: inflammation mostly reducing retrograde transport and oxidative stress slightly enhancing retrograde transportation.
Neuroinflammation acutely impairs axonal mitochondrial transportation, which would promote an inappropriate delivery of energy throughout axons and, by this way, contribute to axonal damage. Thus, preserving axonal mitochondrial transport might represent a promising avenue to exploit as a therapeutic target for neuroprotection in brain inflammatory diseases like multiple sclerosis.
在脑部炎症性疾病中,轴突损伤是导致永久性残疾的级联反应中最关键的步骤之一。因此,确定由炎症或氧化应激引发的、导致轴突损伤的初始事件,对于神经保护疗法的开发至关重要。线粒体功能障碍导致的能量耗竭被认为是轴突损伤的一个重要步骤。这促使我们研究急性炎症和氧化应激对轴突中线粒体的形态、运输和功能的影响。
体外使用脂多糖(LPS)或过氧化氢(H2O2)对小鼠小脑切片培养物进行24小时刺激。通过透射电子显微镜(TEM)评估轴突线粒体形态,并通过延时成像评估线粒体运输。此外,通过高分辨率呼吸测定法和三磷酸腺苷(ATP)产量的定量分析,对小脑切片培养物中的线粒体功能进行分析。
两种情况均促使轴突线粒体的大小和复杂性增加,这在电子显微镜图像中很明显,表明存在代偿反应。这种代偿在组织水平上表现为复合物I和IV的呼吸活性增加,以及对急性炎症的反应中ATP产量的短暂增加。值得注意的是,延时显微镜显示轴突中的线粒体运输(平均速度)严重受损,LPS刺激后轴突中静止线粒体的比例增加。事实上,所使用的两种刺激产生了不同的效果:炎症主要减少逆行运输,而氧化应激略微增强逆行运输。
神经炎症急性损害轴突线粒体运输,这将促进能量在整个轴突中的不适当传递,从而导致轴突损伤。因此,保留轴突线粒体运输可能是一种有前景的途径,可作为多发性硬化症等脑部炎症性疾病神经保护的治疗靶点。