Suppr超能文献

防止轴突钠离子过载或线粒体钙摄取可保护轴突线粒体免受氧化应激诱导的改变。

Preventing Axonal Sodium Overload or Mitochondrial Calcium Uptake Protects Axonal Mitochondria from Oxidative Stress-Induced Alterations.

机构信息

Experimental and Clinical Research Center (ECRC), A Cooperation between Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany.

Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany.

出版信息

Oxid Med Cell Longev. 2022 May 24;2022:6125711. doi: 10.1155/2022/6125711. eCollection 2022.

Abstract

In neuroinflammatory and neurodegenerative disorders such as multiple sclerosis, mitochondrial damage caused by oxidative stress is believed to contribute to neuroaxonal damage. Previously, we demonstrated that exposure to hydrogen peroxide (HO) alters mitochondrial morphology and motility in myelinated axons and that these changes initiate at the nodes of Ranvier, where numerous sodium channels are located. Therefore, we suggested that mitochondrial damage may lead to ATP deficit, thereby affecting the efficiency of the sodium-potassium ATPase and eventually leading to sodium overload in axons. The increased intra-axonal sodium may revert the axonal sodium-calcium exchangers and thus may lead to a pathological calcium overload in the axoplasm and mitochondria. Here, we used the explanted murine ventral spinal roots to investigate whether modulation of sodium or calcium influx may prevent mitochondrial alterations in myelinated axons during exogenous application of HO inducing oxidative stress. For that, tetrodotoxin, an inhibitor of voltage-gated sodium ion channels, and ruthenium 360, an inhibitor of the mitochondrial calcium uniporter, were applied simultaneously with hydrogen peroxide to axons. Mitochondrial shape and motility were analyzed. We showed that inhibition of axonal sodium influx prevented oxidative stress-induced morphological changes (i.e., increase in circularity and area and decrease in length) and preserved mitochondrial membrane potential, which is crucial for ATP production. Blocking mitochondrial calcium uptake prevented decrease in mitochondrial motility and also preserved membrane potential. Our findings indicate that alterations of both mitochondrial morphology and motility in the contexts of oxidative stress can be counterbalanced by modulating intramitochondrial ion concentrations pharmacologically. Moreover, motile mitochondria show preserved membrane potentials, pointing to a close association between mitochondrial motility and functionality.

摘要

在神经炎症和神经退行性疾病(如多发性硬化症)中,氧化应激引起的线粒体损伤被认为是导致神经轴突损伤的原因。此前,我们已经证明,暴露于过氧化氢(HO)会改变有髓轴突中的线粒体形态和运动,这些变化始于Ranvier 结,那里有大量的钠通道。因此,我们认为线粒体损伤可能导致 ATP 缺乏,从而影响钠钾 ATP 酶的效率,并最终导致轴突中的钠离子过载。增加的轴内钠离子可能使轴突钠离子钙交换器反转,从而导致轴浆和线粒体中的病理性钙过载。在这里,我们使用离体的鼠腹根来研究在 HO 诱导氧化应激的外源性应用期间,调节钠或钙内流是否可以防止有髓轴突中的线粒体改变。为此,我们同时应用河豚毒素(一种电压门控钠离子通道抑制剂)和钌 360(一种线粒体钙单向转运体抑制剂)与过氧化氢一起应用于轴突。分析了线粒体的形状和运动。我们表明,抑制轴突钠离子内流可以防止氧化应激诱导的形态变化(即圆形度和面积增加,长度减少),并保持对 ATP 产生至关重要的线粒体膜电位。阻断线粒体钙摄取可以防止线粒体运动减少,并且还可以保持膜电位。我们的发现表明,在氧化应激的情况下,线粒体形态和运动的改变可以通过药理学调节细胞内离子浓度来平衡。此外,运动的线粒体保持膜电位,表明线粒体运动和功能之间存在密切关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1061/9157283/12c206f2dc1a/OMCL2022-6125711.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验