Brown Jesse A, Van Horn John D
Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
Laboratory of Neuroimaging, Department of Neurology, University of Southern California, Los Angeles, CA, USA.
Neuroimage. 2016 Jan 1;124(Pt B):1238-1241. doi: 10.1016/j.neuroimage.2015.08.043. Epub 2015 Aug 24.
We describe the USC Multimodal Connectivity Database (http://umcd.humanconnectomeproject.org), an interactive web-based platform for brain connectivity matrix sharing and analysis. The site enables users to download connectivity matrices shared by other users, upload matrices from their own published studies, or select a specific matrix and perform a real-time graph theory-based analysis and visualization of network properties. The data shared on the site span a broad spectrum of functional and structural brain connectivity information from humans across the entire age range (fetal to age 89), representing an array of different neuropsychiatric and neurodegenerative disease populations (autism spectrum disorder, ADHD, and APOE-4 carriers). An analysis combining 7 different datasets shared on the site illustrates the diversity of the data and the potential for yielding deeper insight by assessing new connectivity matrices with respect to population-wide network properties represented in the UMCD.
我们介绍了南加州大学多模态连接数据库(http://umcd.humanconnectomeproject.org),这是一个基于网络的交互式平台,用于大脑连接矩阵的共享和分析。该网站允许用户下载其他用户共享的连接矩阵,上传自己发表研究中的矩阵,或选择特定矩阵并基于图论对网络属性进行实时分析和可视化。该网站上共享的数据涵盖了从胎儿到89岁全年龄段人类广泛的功能性和结构性大脑连接信息,代表了一系列不同的神经精神疾病和神经退行性疾病人群(自闭症谱系障碍、注意力缺陷多动障碍和APOE - 4携带者)。结合该网站上共享的7个不同数据集进行的分析,展示了数据的多样性以及通过评估与UMCD中所代表的全人群网络属性相关的新连接矩阵来获得更深入见解的潜力。