Suppr超能文献

MRI 质量控制在意大利神经影像学网络倡议中的应用:向多发性硬化症的大数据迈进。

MRI quality control for the Italian Neuroimaging Network Initiative: moving towards big data in multiple sclerosis.

机构信息

Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.

Vita-Salute San Raffaele University, Milan, Italy.

出版信息

J Neurol. 2019 Nov;266(11):2848-2858. doi: 10.1007/s00415-019-09509-4. Epub 2019 Aug 17.

Abstract

The Italian Neuroimaging Network Initiative (INNI) supports the creation of a repository, where MRI, clinical, and neuropsychological data from multiple sclerosis (MS) patients and healthy controls are collected from Italian Research Centers with internationally recognized expertise in MRI applied to MS. However, multicenter MRI data integration needs standardization and quality control (QC). This study aimed to implement quantitative measures for characterizing the standardization and quality of MRI collected within INNI. MRI scans of 423 MS patients, including 3D T- and T-weighted, were obtained from INNI repository (from Centers A, B, C, and D). QC measures were implemented to characterize: (1) head positioning relative to the magnet isocenter; (2) intensity inhomogeneity; (3) relative image contrast between brain tissues; and (4) image artefacts. Centers A and D showed the most accurate subject positioning within the MR scanner (median z-offsets = - 2.6 ± 1.7 cm and - 1.1 ± 2 cm). A low, but significantly different, intensity inhomogeneity on 3D T-weighted MRI was found between all centers (p < 0.05), except for Centers A and C that showed comparable image bias fields. Center D showed the highest relative contrast between gray and normal appearing white matter (NAWM) on 3D T-weighed MRI (0.63 ± 0.04), while Center B showed the highest relative contrast between NAWM and MS lesions on FLAIR (0.21 ± 0.06). Image artefacts were mainly due to brain movement (60%) and ghosting (35%). The implemented QC procedure ensured systematic data quality assessment within INNI, thus making available a huge amount of high-quality MRI to better investigate pathophysiological substrates and validate novel MRI biomarkers in MS.

摘要

意大利神经影像学网络倡议(INNI)支持建立一个存储库,该存储库收集了来自意大利研究中心的多发性硬化症(MS)患者和健康对照者的 MRI、临床和神经心理学数据,这些研究中心在应用于 MS 的 MRI 方面具有国际公认的专业知识。然而,多中心 MRI 数据集成需要标准化和质量控制(QC)。本研究旨在实施定量措施,以描述 INNI 内收集的 MRI 的标准化和质量。从 INNI 存储库(来自中心 A、B、C 和 D)获得了 423 名 MS 患者的 MRI 扫描,包括 3D T-和 T 加权。实施 QC 措施以表征:(1)头部相对于磁体等中心点的定位;(2)强度不均匀性;(3)脑组织结构之间的相对图像对比度;(4)图像伪影。中心 A 和 D 显示出磁共振扫描仪内受试者定位最准确(中位数 z 偏移量=-2.6±1.7cm 和-1.1±2cm)。所有中心之间的 3D T 加权 MRI 上的强度不均匀性较低,但差异显著(p<0.05),除了中心 A 和 C,它们显示出可比的图像偏置场。中心 D 在 3D T 加权 MRI 上显示出灰质和正常外观白质(NAWM)之间的最高相对对比度(0.63±0.04),而中心 B 在 FLAIR 上显示出 NAWM 和 MS 病变之间的最高相对对比度(0.21±0.06)。图像伪影主要是由于大脑运动(60%)和重影(35%)引起的。实施的 QC 程序确保了 INNI 内的数据质量评估系统,从而提供了大量高质量的 MRI,以更好地研究 MS 的病理生理基础并验证新的 MRI 生物标志物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验