Suppr超能文献

兰花系统发育基因组学及其非凡多样化的多种驱动因素。

Orchid phylogenomics and multiple drivers of their extraordinary diversification.

作者信息

Givnish Thomas J, Spalink Daniel, Ames Mercedes, Lyon Stephanie P, Hunter Steven J, Zuluaga Alejandro, Iles William J D, Clements Mark A, Arroyo Mary T K, Leebens-Mack James, Endara Lorena, Kriebel Ricardo, Neubig Kurt M, Whitten W Mark, Williams Norris H, Cameron Kenneth M

出版信息

Proc Biol Sci. 2015 Sep 7;282(1814). doi: 10.1098/rspb.2015.1553.

Abstract

Orchids are the most diverse family of angiosperms, with over 25 000 species,more than mammals, birds and reptiles combined. Tests of hypotheses to account for such diversity have been stymied by the lack of a fully resolved broad-scale phylogeny. Here,we provide such a phylogeny, based on 75 chloroplast genes for 39 species representing all orchid subfamilies and 16 of 17 tribes, time-calibrated against 17 angiosperm fossils. Asupermatrix analysis places an additional 144 species based on three plastid genes. Orchids appear to have arisen roughly 112 million years ago (Mya); the subfamilies Orchidoideae and Epidendroideae diverged from each other at the end of the Cretaceous; and the eight tribes and three previously unplaced subtribes of the upper epidendroids diverged rapidly from each other between 37.9 and 30.8 Mya. Orchids appear to have undergone one significant acceleration of net species diversification in the orchidoids, and two accelerations and one deceleration in the upper epidendroids. Consistent with theory, such accelerations were correlated with the evolution of pollinia, the epiphytic habit, CAM photosynthesis, tropical distribution (especially in extensive cordilleras),and pollination via Lepidoptera or euglossine bees. Deceit pollination appears to have elevated the number of orchid species by one-half but not via acceleration of the rate of net diversification. The highest rate of net species diversification within the orchids (0.382 sp sp(-1) My(-1)) is 6.8 times that at the Asparagales crown.

摘要

兰花是被子植物中种类最多的科,有超过25000个物种,比哺乳动物、鸟类和爬行动物的种类总和还多。由于缺乏一个完全解析的广泛系统发育树,用于解释这种多样性的假设检验一直受到阻碍。在这里,我们基于代表所有兰花亚科和17个族中的16个族的39个物种的75个叶绿体基因构建了这样一个系统发育树,并根据17个被子植物化石进行了时间校准。一个超级矩阵分析基于三个质体基因定位了另外144个物种。兰花似乎大约在1.12亿年前出现;兰亚科和树兰亚科在白垩纪末期彼此分化;树兰亚科上部的八个族和三个以前未定位的亚族在3790万至3080万年前迅速彼此分化。兰花似乎在兰族中经历了一次显著的净物种多样化加速,在树兰亚科上部经历了两次加速和一次减速。与理论一致,这些加速与花粉块、附生习性、景天酸代谢光合作用、热带分布(特别是在广阔的山脉中)以及通过鳞翅目昆虫或 Euglossine 蜜蜂授粉的进化相关。欺骗性授粉似乎使兰花物种数量增加了一半,但不是通过加速净多样化速率。兰花内部最高的净物种多样化速率(0.382种·种⁻¹·百万年⁻¹)是天门冬目冠部速率的6.8倍。

相似文献

1
Orchid phylogenomics and multiple drivers of their extraordinary diversification.
Proc Biol Sci. 2015 Sep 7;282(1814). doi: 10.1098/rspb.2015.1553.
3
Phylogenomics of Orchidaceae based on plastid and mitochondrial genomes.
Mol Phylogenet Evol. 2019 Oct;139:106540. doi: 10.1016/j.ympev.2019.106540. Epub 2019 Jun 25.
4
The Apostasia genome and the evolution of orchids.
Nature. 2017 Sep 21;549(7672):379-383. doi: 10.1038/nature23897. Epub 2017 Sep 13.
5
Comprehensive phylogenetic analyses of Orchidaceae using nuclear genes and evolutionary insights into epiphytism.
J Integr Plant Biol. 2023 May;65(5):1204-1225. doi: 10.1111/jipb.13462. Epub 2023 Mar 15.
8
Dating the origin of the Orchidaceae from a fossil orchid with its pollinator.
Nature. 2007 Aug 30;448(7157):1042-5. doi: 10.1038/nature06039.

引用本文的文献

2
Phylogenetic placement of the mysterious Malagasy genus H. Perrier (Vandeae, Orchidaceae).
Front Plant Sci. 2025 Jun 19;16:1602122. doi: 10.3389/fpls.2025.1602122. eCollection 2025.
4
Geographic range size and rarity of epiphytic flowering plants.
Nat Plants. 2025 Jun 13. doi: 10.1038/s41477-025-02022-9.
5
A chromosome-level genome assembly reveals the regulatory mechanisms of flavonoid and carotenoid biosynthesis pathways.
Acta Pharm Sin B. 2025 Apr;15(4):2253-2272. doi: 10.1016/j.apsb.2025.03.005. Epub 2025 Mar 7.

本文引用的文献

1
SPECIES RICHNESS WITHIN FAMILIES OF FLOWERING PLANTS.
Evolution. 1994 Oct;48(5):1619-1636. doi: 10.1111/j.1558-5646.1994.tb02200.x.
2
Selecting optimal partitioning schemes for phylogenomic datasets.
BMC Evol Biol. 2014 Apr 17;14:82. doi: 10.1186/1471-2148-14-82.
3
Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees.
PLoS One. 2014 Feb 26;9(2):e89543. doi: 10.1371/journal.pone.0089543. eCollection 2014.
4
Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae.
Mol Phylogenet Evol. 2014 Feb;71:55-78. doi: 10.1016/j.ympev.2013.10.010.
5
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.
Bioinformatics. 2014 May 1;30(9):1312-3. doi: 10.1093/bioinformatics/btu033. Epub 2014 Jan 21.
6
Ancestral deceit and labile evolution of nectar production in the African orchid genus Disa.
Biol Lett. 2013 Jul 31;9(5):20130500. doi: 10.1098/rsbl.2013.0500. Print 2013 Oct 23.
7
Low population genetic differentiation in the Orchidaceae: implications for the diversification of the family.
Mol Ecol. 2012 Nov;21(21):5208-20. doi: 10.1111/mec.12036. Epub 2012 Sep 27.
8
Bayesian phylogenetics with BEAUti and the BEAST 1.7.
Mol Biol Evol. 2012 Aug;29(8):1969-73. doi: 10.1093/molbev/mss075. Epub 2012 Feb 25.
9
Limitations on orchid recruitment: not a simple picture.
Mol Ecol. 2012 Mar;21(6):1511-23. doi: 10.1111/j.1365-294X.2012.05468.x. Epub 2012 Jan 24.
10
Asynchronous diversification in a specialized plant-pollinator mutualism.
Science. 2011 Sep 23;333(6050):1742-6. doi: 10.1126/science.1209175.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验