Garneau Alexandre P, Carpentier Gabriel A, Marcoux Andrée-Anne, Frenette-Cotton Rachelle, Simard Charles F, Rémus-Borel Wilfried, Caron Luc, Jacob-Wagner Mariève, Noël Micheline, Powell Jonathan J, Bélanger Richard, Côté François, Isenring Paul
L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada.
Department of Phytology, Faculty of Sciences of Agriculture and Alimentation, Laval Université Laval, Québec City, Québec, Canada.
PLoS One. 2015 Aug 27;10(8):e0136149. doi: 10.1371/journal.pone.0136149. eCollection 2015.
In animals, silicon is an abundant and differentially distributed trace element that is believed to play important biological functions. One would thus expect silicon concentrations in body fluids to be regulated by silicon transporters at the surface of many cell types. Curiously, however, and even though they exist in plants and algae, no such transporters have been identified to date in vertebrates. Here, we show for the first time that the human aquaglyceroporins, i.e., AQP3, AQP7, AQP9 and AQP10 can act as silicon transporters in both Xenopus laevis oocytes and HEK-293 cells. In particular, heterologously expressed AQP7, AQP9 and AQP10 are all able to induce robust, saturable, phloretin-sensitive silicon transport activity in the range that was observed for low silicon rice 1 (lsi1), a silicon transporter in plant. Furthermore, we show that the aquaglyceroporins appear as relevant silicon permeation pathways in both mice and humans based on 1) the kinetics of substrate transport, 2) their presence in tissues where silicon is presumed to play key roles and 3) their transcriptional responses to changes in dietary silicon. Taken together, our data provide new evidence that silicon is a potentially important biological element in animals and that its body distribution is regulated. They should open up original areas of investigations aimed at deciphering the true physiological role of silicon in vertebrates.
在动物体内,硅是一种含量丰富且分布不均的微量元素,据信具有重要的生物学功能。因此,人们预计许多细胞类型表面的硅转运蛋白会调节体液中的硅浓度。然而,奇怪的是,尽管硅转运蛋白存在于植物和藻类中,但迄今为止在脊椎动物中尚未发现此类转运蛋白。在此,我们首次表明,人类水甘油通道蛋白,即水通道蛋白3(AQP3)、水通道蛋白7(AQP7)、水通道蛋白9(AQP9)和水通道蛋白10(AQP10)在非洲爪蟾卵母细胞和人胚肾293细胞(HEK - 293细胞)中均可作为硅转运蛋白发挥作用。特别是,异源表达的AQP7、AQP9和AQP10均能够在植物硅转运蛋白低硅水稻1(lsi1)所观察到的范围内诱导强大的、可饱和的、根皮素敏感的硅转运活性。此外,基于以下几点,我们表明水甘油通道蛋白在小鼠和人类中似乎都是相关的硅渗透途径:1)底物运输的动力学;2)它们在假定硅起关键作用的组织中的存在;3)它们对饮食中硅变化的转录反应。综上所述,我们的数据提供了新的证据,表明硅在动物体内是一种潜在的重要生物元素,其体内分布受到调节。这些数据应该会开辟新的研究领域,旨在破译硅在脊椎动物中的真正生理作用。