Jensen Jaime L, Balbo Andrea, Neau David B, Chakravarthy Srinivas, Zhao Huaying, Sinha Sangita C, Colbert Christopher L
Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States.
Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States.
Biochemistry. 2015 Sep 29;54(38):5867-77. doi: 10.1021/acs.biochem.5b00826. Epub 2015 Sep 14.
Gram-negative bacteria tightly regulate intracellular levels of iron, an essential nutrient. To ensure this strict control, some outer membrane TonB-dependent transporters (TBDTs) that are responsible for iron import stimulate their own transcription in response to extracellular binding by an iron-laden siderophore. This process is mediated by an inner membrane sigma regulator protein (an anti-sigma factor) that transduces an unknown periplasmic signal from the TBDT to release an intracellular sigma factor from the inner membrane, which ultimately upregulates TBDT transcription. Here, we use the Pseudomonas putida ferric-pseudobactin BN7/BN8 sigma regulator, PupR, as a model system to understand the molecular mechanism of this conserved class of sigma regulators. We have determined the X-ray crystal structure of the cytoplasmic anti-sigma domain (ASD) of PupR to 2.0 Å. Size exclusion chromatography, small-angle X-ray scattering, and sedimentation velocity analytical ultracentrifugation all indicate that, in contrast to other ASDs, the PupR-ASD exists as a dimer in solution. Mutagenesis of residues at the dimer interface identified from the crystal structure disrupts dimerization and protein stability, as determined by sedimentation velocity analytical ultracentrifugation and thermal denaturation circular dichroism spectroscopy. These combined results suggest that this type of inner membrane sigma regulator may utilize an unusual mechanism to sequester their cognate sigma factors and prevent transcription activation.
革兰氏阴性菌严格调控细胞内铁(一种必需营养素)的水平。为确保这种严格控制,一些负责铁摄入的外膜托蛋白依赖性转运蛋白(TBDT)会在与含铁的铁载体发生细胞外结合时刺激自身转录。这个过程由一种内膜σ调节蛋白(一种抗σ因子)介导,该蛋白将来自TBDT的未知周质信号进行转导,从而从内膜释放细胞内σ因子,并最终上调TBDT转录。在这里,我们使用恶臭假单胞菌铁-假菌素BN7/BN8 σ调节蛋白PupR作为模型系统,以了解这类保守的σ调节蛋白的分子机制。我们已将PupR的细胞质抗σ结构域(ASD)的X射线晶体结构解析到2.0 Å分辨率。尺寸排阻色谱法、小角X射线散射法和沉降速度分析超离心法均表明,与其他ASD不同,PupR-ASD在溶液中以二聚体形式存在。通过沉降速度分析超离心法和热变性圆二色光谱法确定,从晶体结构中鉴定出的二聚体界面处残基的诱变会破坏二聚化和蛋白质稳定性。这些综合结果表明,这类内膜σ调节蛋白可能利用一种不同寻常的机制来隔离其同源σ因子并防止转录激活。