Chen Chi, Baiyee Zarah Medina, Ciucci Francesco
Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China.
Phys Chem Chem Phys. 2015 Oct 7;17(37):24011-9. doi: 10.1039/c5cp03973h. Epub 2015 Aug 27.
BaFeO3 (BFO) is a promising parent material for high-temperature oxygen catalysis. The effects of La substitution on the oxygen ion diffusion and oxygen catalysis in A-site La-substituted BFO are studied by combining data-driven molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The data-driven MD simulations are capable of providing atomic level information regarding oxygen jumps at different sites, bridging the resolution gap of analysis between MD and DFT. The simulations identify several effects due to the introduction of La. First, according to simple electroneutrality considerations and DFT calculations, La tends to decrease the concentration of oxygen vacancies in BFO. Second, La substitution lowers the activation energy of local oxygen migration, providing faster paths for oxygen diffusion. The MD analysis predicts a higher hopping rate through La-containing bottlenecks as well as easier oxygen jumps from the La-rich cages and lower dwell times of oxygen in those cages. DFT calculations confirm a lower migration energy through La-containing bottlenecks. Third, the electrocatalytic activity of the material decreases with La, as indicated by a lower O p-band center and higher oxygen vacancy formation energies.
BaFeO₃(BFO)是一种很有前景的高温氧催化母体材料。通过结合数据驱动的分子动力学(MD)模拟和密度泛函理论(DFT)计算,研究了A位La取代的BFO中La取代对氧离子扩散和氧催化的影响。数据驱动的MD模拟能够提供关于不同位点氧跳跃的原子级信息,弥合了MD和DFT之间分析分辨率的差距。模拟确定了由于引入La而产生的几种影响。首先,根据简单的电中性考虑和DFT计算,La倾向于降低BFO中氧空位的浓度。其次,La取代降低了局部氧迁移的活化能,为氧扩散提供了更快的路径。MD分析预测通过含La瓶颈的跳跃率更高,以及氧从富La笼中更容易跳跃且在这些笼中停留时间更短。DFT计算证实通过含La瓶颈的迁移能量更低。第三,如较低的O p带中心和较高的氧空位形成能所示,材料的电催化活性随La的增加而降低。