Suppr超能文献

从封面看:细菌鞭毛作为推进器和方向舵,实现高效趋化性。

From the Cover: Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis.

机构信息

Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, PA 15260, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2246-51. doi: 10.1073/pnas.1011953108. Epub 2011 Jan 4.

Abstract

We investigate swimming and chemotactic behaviors of the polarly flagellated marine bacteria Vibrio alginolyticus in an aqueous medium. Our observations show that V. alginolyticus execute a cyclic, three-step (forward, reverse, and flick) swimming pattern that is distinctively different from the run-tumble pattern adopted by Escherichia coli. Specifically, the bacterium backtracks its forward swimming path when the motor reverses. However, upon resuming forward swimming, the flagellum flicks and a new swimming direction is selected at random. In a chemically homogeneous medium (no attractant or repellent), the consecutive forward t(f) and backward t(b) swimming times are uncorrelated. Interestingly, although t(f) and t(b) are not distributed in a Poissonian fashion, their difference Δt = |t(f) - t(b)| is. Near a point source of attractant, on the other hand, t(f) and t(b) are found to be strongly correlated, and Δt obeys a bimodal distribution. These observations indicate that V. alginolyticus exploit the time-reversal symmetry of forward and backward swimming by using the time difference to regulate their chemotactic behavior. By adopting the three-step cycle, cells of V. alginolyticus are able to quickly respond to a chemical gradient as well as to localize near a point source of attractant.

摘要

我们研究了极性鞭毛海洋细菌 V. alginolyticus 在水介质中的游动和趋化行为。我们的观察表明,V. alginolyticus 执行一种循环的、三步(前进、后退和鞭毛摆动)游动模式,与大肠杆菌采用的跑-跌模式明显不同。具体来说,当马达反转时,细菌会回溯其前进的游动路径。然而,当重新开始向前游动时,鞭毛会摆动,随机选择新的游动方向。在化学均匀的介质中(没有趋化剂或排斥剂),连续的向前游动时间 t(f) 和向后游动时间 t(b) 是不相关的。有趣的是,尽管 t(f) 和 t(b) 不是按泊松分布的,但它们的差值 Δt=|t(f)-t(b)|是。另一方面,在趋化剂的点源附近,t(f) 和 t(b) 被发现是强相关的,并且 Δt 服从双峰分布。这些观察表明,V. alginolyticus 通过利用前进和后退游动的时间反转对称性,通过时间差来调节它们的趋化行为。通过采用三步循环,V. alginolyticus 的细胞能够快速响应化学梯度,并在趋化剂的点源附近定位。

相似文献

3
Speed-dependent chemotactic precision in marine bacteria.海洋细菌中与速度相关的趋化精度。
Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8624-9. doi: 10.1073/pnas.1602307113. Epub 2016 Jul 20.
4
An Element of Determinism in a Stochastic Flagellar Motor Switch.随机鞭毛马达开关中的决定论因素
PLoS One. 2015 Nov 10;10(11):e0141654. doi: 10.1371/journal.pone.0141654. eCollection 2015.
10
Reverse and flick: Hybrid locomotion in bacteria.反转与轻弹:细菌中的混合运动
Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2635-6. doi: 10.1073/pnas.1019199108. Epub 2011 Feb 2.

引用本文的文献

1
Drift velocity of bacterial chemotaxis in dynamic chemical environments.动态化学环境中细菌趋化作用的漂移速度。
Philos Trans A Math Phys Eng Sci. 2025 Sep 11;383(2304):20240261. doi: 10.1098/rsta.2024.0261.
9
The carnivorous plant harnesses active particle dynamics to prey on microfauna.这种食肉植物利用活跃的粒子动力学来捕食小型动物。
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2409510121. doi: 10.1073/pnas.2409510121. Epub 2024 Dec 31.

本文引用的文献

2
Bacterial tracking of motile algae.细菌追踪游动藻类。
FEMS Microbiol Ecol. 2003 May 1;44(1):79-87. doi: 10.1111/j.1574-6941.2003.tb01092.x.
5
Amplified effect of Brownian motion in bacterial near-surface swimming.布朗运动在细菌近表面游动中的放大效应。
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18355-9. doi: 10.1073/pnas.0807305105. Epub 2008 Nov 17.
10
Real-time imaging of fluorescent flagellar filaments.荧光鞭毛丝的实时成像。
J Bacteriol. 2000 May;182(10):2793-801. doi: 10.1128/JB.182.10.2793-2801.2000.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验