El Amrani Khadija, Stachelscheid Harald, Lekschas Fritz, Kurtz Andreas, Andrade-Navarro Miguel A
Charité - Universitätsmedizin Berlin, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Berlin, 13353, Germany.
Berlin Institute of Health, Berlin, 10117, Germany.
BMC Genomics. 2015 Aug 28;16(1):645. doi: 10.1186/s12864-015-1785-9.
Identification of marker genes associated with a specific tissue/cell type is a fundamental challenge in genetic and cell research. Marker genes are of great importance for determining cell identity, and for understanding tissue specific gene function and the molecular mechanisms underlying complex diseases.
We have developed a new bioinformatics tool called MGFM (Marker Gene Finder in Microarray data) to predict marker genes from microarray gene expression data. Marker genes are identified through the grouping of samples of the same type with similar marker gene expression levels. We verified our approach using two microarray data sets from the NCBI's Gene Expression Omnibus public repository encompassing samples for similar sets of five human tissues (brain, heart, kidney, liver, and lung). Comparison with another tool for tissue-specific gene identification and validation with literature-derived established tissue markers established functionality, accuracy and simplicity of our tool. Furthermore, top ranked marker genes were experimentally validated by reverse transcriptase-polymerase chain reaction (RT-PCR). The sets of predicted marker genes associated with the five selected tissues comprised well-known genes of particular importance in these tissues. The tool is freely available from the Bioconductor web site, and it is also provided as an online application integrated into the CellFinder platform ( http://cellfinder.org/analysis/marker ).
MGFM is a useful tool to predict tissue/cell type marker genes using microarray gene expression data. The implementation of the tool as an R-package as well as an application within CellFinder facilitates its use.
识别与特定组织/细胞类型相关的标记基因是基因和细胞研究中的一项基本挑战。标记基因对于确定细胞身份、理解组织特异性基因功能以及复杂疾病的分子机制至关重要。
我们开发了一种名为MGFM(微阵列数据中的标记基因查找器)的新生物信息学工具,用于从微阵列基因表达数据中预测标记基因。通过将具有相似标记基因表达水平的相同类型样本进行分组来识别标记基因。我们使用来自NCBI的基因表达综合公共存储库的两个微阵列数据集验证了我们的方法,这些数据集包含了五组相似人类组织(脑、心脏、肾脏、肝脏和肺)的样本。与另一种用于组织特异性基因识别的工具进行比较,并通过文献中已确立的组织标记进行验证,证实了我们工具的功能、准确性和简易性。此外,通过逆转录聚合酶链反应(RT-PCR)对排名靠前的标记基因进行了实验验证。与所选五种组织相关的预测标记基因集包含了在这些组织中特别重要的知名基因。该工具可从Bioconductor网站免费获取,并且还作为集成到CellFinder平台(http://cellfinder.org/analysis/marker)中的在线应用程序提供。
MGFM是一种利用微阵列基因表达数据预测组织/细胞类型标记基因的有用工具。该工具作为R包以及在CellFinder中的应用便于其使用。