Váraljai Renáta, Islam Abul B M M K, Beshiri Michael L, Rehman Jalees, Lopez-Bigas Nuria, Benevolenskaya Elizaveta V
Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA; Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Barcelona Biomedical Research Park, Universitat Pompeu Fabra, Barcelona 08003, Spain; Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh;
Genes Dev. 2015 Sep 1;29(17):1817-34. doi: 10.1101/gad.264036.115. Epub 2015 Aug 27.
The retinoblastoma tumor suppressor protein pRb restricts cell growth through inhibition of cell cycle progression. Increasing evidence suggests that pRb also promotes differentiation, but the mechanisms are poorly understood, and the key question remains as to how differentiation in tumor cells can be enhanced in order to diminish their aggressive potential. Previously, we identified the histone demethylase KDM5A (lysine [K]-specific demethylase 5A), which demethylates histone H3 on Lys4 (H3K4), as a pRB-interacting protein counteracting pRB's role in promoting differentiation. Here we show that loss of Kdm5a restores differentiation through increasing mitochondrial respiration. This metabolic effect is both necessary and sufficient to induce the expression of a network of cell type-specific signaling and structural genes. Importantly, the regulatory functions of pRB in the cell cycle and differentiation are distinct because although restoring differentiation requires intact mitochondrial function, it does not necessitate cell cycle exit. Cells lacking Rb1 exhibit defective mitochondria and decreased oxygen consumption. Kdm5a is a direct repressor of metabolic regulatory genes, thus explaining the compensatory role of Kdm5a deletion in restoring mitochondrial function and differentiation. Significantly, activation of mitochondrial function by the mitochondrial biogenesis regulator Pgc-1α (peroxisome proliferator-activated receptor γ-coactivator 1α; also called PPARGC1A) a coactivator of the Kdm5a target genes, is sufficient to override the differentiation block. Overexpression of Pgc-1α, like KDM5A deletion, inhibits cell growth in RB-negative human cancer cell lines. The rescue of differentiation by loss of KDM5A or by activation of mitochondrial biogenesis reveals the switch to oxidative phosphorylation as an essential step in restoring differentiation and a less aggressive cancer phenotype.
视网膜母细胞瘤肿瘤抑制蛋白pRb通过抑制细胞周期进程来限制细胞生长。越来越多的证据表明,pRb也促进细胞分化,但其机制尚不清楚,关键问题仍然是如何增强肿瘤细胞的分化以降低其侵袭潜能。此前,我们鉴定出组蛋白去甲基化酶KDM5A(赖氨酸[K]特异性去甲基化酶5A),它可使赖氨酸4(H3K4)上的组蛋白H3去甲基化,是一种与pRB相互作用的蛋白,可抵消pRB在促进分化中的作用。在此我们表明,Kdm5a的缺失通过增加线粒体呼吸来恢复分化。这种代谢效应对于诱导细胞类型特异性信号和结构基因网络的表达既是必要的也是充分的。重要的是,pRB在细胞周期和分化中的调节功能是不同的,因为尽管恢复分化需要完整的线粒体功能,但并不一定需要细胞周期退出。缺乏Rb1的细胞表现出线粒体缺陷和氧消耗减少。Kdm5a是代谢调节基因的直接抑制因子,这就解释了Kdm5a缺失在恢复线粒体功能和分化中的补偿作用。值得注意的是,线粒体生物发生调节因子Pgc-1α(过氧化物酶体增殖物激活受体γ共激活因子1α;也称为PPARGC1A),即Kdm5a靶基因的一种共激活因子,激活线粒体功能足以克服分化障碍。Pgc-1α的过表达,与KDM5A缺失一样,可抑制RB阴性人类癌细胞系中的细胞生长。KDM5A缺失或线粒体生物发生激活对分化的挽救揭示了向氧化磷酸化的转变是恢复分化和降低侵袭性癌症表型的关键步骤。