Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf (Germany).
Université de Montpellier, Institut Charles Gerhardt Montpellier, 2 place Eugène Bataillon, 34095, Montpellier (France).
Angew Chem Int Ed Engl. 2015 Oct 19;54(43):12753-7. doi: 10.1002/anie.201504903. Epub 2015 Aug 28.
Fundamental understanding of non-precious metal catalysts for the oxygen reduction reaction (ORR) is the nub for the successful replacement of noble Pt in fuel cells and, therefore, of central importance for a technological breakthrough. Herein, the degradation mechanisms of a model high-performance Fe-N-C catalyst have been studied with online inductively coupled plasma mass spectrometry (ICP-MS) and differential electrochemical mass spectroscopy (DEMS) coupled to a modified scanning flow cell (SFC) system. We demonstrate that Fe leaching from iron particles occurs at low potential (<0.7 V) without a direct adverse effect on the ORR activity, while carbon oxidation occurs at high potential (>0.9 V) with a destruction of active sites such as FeNx Cy species. Operando techniques combined with identical location-scanning transmission electron spectroscopy (IL-STEM) identify that the latter mechanism leads to a major ORR activity decay, depending on the upper potential limit and electrolyte temperature. Stable operando potential windows and operational strategies are suggested for avoiding degradation of Fe-N-C catalysts in acidic medium.
对于氧还原反应(ORR)非贵金属催化剂的基本理解是成功取代燃料电池中贵金属 Pt 的关键,因此对于技术突破至关重要。在此,通过在线电感耦合等离子体质谱(ICP-MS)和差示电化学质谱(DEMS)与改进的扫描流动池(SFC)系统联用,研究了模型高性能 Fe-N-C 催化剂的降解机制。我们证明,铁颗粒中的铁浸出发生在低电位(<0.7 V)下,而不会对 ORR 活性产生直接不利影响,而碳氧化发生在高电位(>0.9 V)下,导致 FeNx Cy 等活性位点的破坏。在位技术与相同位置扫描透射电子显微镜(IL-STEM)相结合,表明后一种机制会导致 ORR 活性的主要衰减,这取决于上限电位和电解质温度。建议在酸性介质中使用稳定的在位操作窗口和操作策略,以避免 Fe-N-C 催化剂的降解。