Longhi Stefano, Gatti Davide, Della Valle Giuseppe
Dipartimento di Fisica- Politecnico di Milano and Istituto di Fotonica e Nanotecnologie-Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy.
Sci Rep. 2015 Aug 28;5:13376. doi: 10.1038/srep13376.
Combating the effects of disorder on light transport in micro- and nano-integrated photonic devices is of major importance from both fundamental and applied viewpoints. In ordinary waveguides, imperfections and disorder cause unwanted back-reflections, which hinder large-scale optical integration. Topological photonic structures, a new class of optical systems inspired by quantum Hall effect and topological insulators, can realize robust transport via topologically-protected unidirectional edge modes. Such waveguides are realized by the introduction of synthetic gauge fields for photons in a two-dimensional structure, which break time reversal symmetry and enable one-way guiding at the edge of the medium. Here we suggest a different route toward robust transport of light in lower-dimensional (1D) photonic lattices, in which time reversal symmetry is broken because of the non-Hermitian nature of transport. While a forward propagating mode in the lattice is amplified, the corresponding backward propagating mode is damped, thus resulting in an asymmetric transport insensitive to disorder or imperfections in the structure. Non-Hermitian asymmetric transport can occur in tight-binding lattices with an imaginary gauge field via a non-Hermitian delocalization transition, and in periodically-driven superlattices. The possibility to observe non-Hermitian delocalization is suggested using an engineered coupled-resonator optical waveguide (CROW) structure.
从基础和应用的角度来看,对抗无序对微纳集成光子器件中光传输的影响都至关重要。在普通波导中,缺陷和无序会导致不必要的背反射,这阻碍了大规模光学集成。拓扑光子结构是一类受量子霍尔效应和拓扑绝缘体启发的新型光学系统,它可以通过拓扑保护的单向边缘模式实现稳健的传输。这种波导是通过在二维结构中为光子引入合成规范场来实现的,该规范场打破了时间反演对称性,并在介质边缘实现单向引导。在这里,我们提出了一种在低维(1D)光子晶格中实现光稳健传输的不同途径,其中由于传输的非厄米性质,时间反演对称性被打破。虽然晶格中的正向传播模式被放大,但相应的反向传播模式被衰减,从而导致对结构中的无序或缺陷不敏感的不对称传输。非厄米不对称传输可以通过非厄米离域转变,在具有虚规范场的紧束缚晶格中以及在周期性驱动的超晶格中发生。利用工程化的耦合谐振器光波导(CROW)结构,提出了观察非厄米离域的可能性。