Khilari Santimoy, Pandit Soumya, Varanasi Jhansi L, Das Debabrata, Pradhan Debabrata
Materials Science Centre and ‡Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, West Bengal, India.
ACS Appl Mater Interfaces. 2015 Sep 23;7(37):20657-66. doi: 10.1021/acsami.5b05273. Epub 2015 Sep 8.
Microbial fuel cells (MFCs) are emerging as a sustainable technology for waste to energy conversion where electrode materials play a vital role on its performance. Platinum (Pt) is the most common material used as cathode catalyst in the MFCs. However, the high cost and low earth abundance associated with Pt prompt the researcher to explore inexpensive catalysts. The present study demonstrates a noble metal-free MFC using a manganese ferrite (MnFe2O4)/polyaniline (PANI)-based electrode material. The MnFe2O4 nanoparticles (NPs) and MnFe2O4 NPs/PANI hybrid composite not only exhibited superior oxygen reduction reaction (ORR) activity for the air cathode but also enhanced anode half-cell potential upon modifying carbon cloth anode in the single-chambered MFC. This is attributed to the improved extracellular electron transfer of exoelectrogens due to Fe(3+) in MnFe2O4 and its capacitive nature. The present work demonstrates for the first time the dual property of MnFe2O4 NPs/PANI, i.e., as cathode catalyst and an anode modifier, thereby promising cost-effective MFCs for practical applications.
微生物燃料电池(MFCs)正作为一种将废物转化为能源的可持续技术而兴起,其中电极材料对其性能起着至关重要的作用。铂(Pt)是MFCs中用作阴极催化剂的最常见材料。然而,与Pt相关的高成本和低地球丰度促使研究人员探索廉价的催化剂。本研究展示了一种使用基于锰铁氧体(MnFe2O4)/聚苯胺(PANI)的电极材料的无贵金属MFC。MnFe2O4纳米颗粒(NPs)和MnFe2O4 NPs/PANI混合复合材料不仅对空气阴极表现出优异的氧还原反应(ORR)活性,而且在单室MFC中对碳布阳极进行改性后还提高了阳极半电池电位。这归因于MnFe2O4中的Fe(3+)及其电容性质改善了外生电子菌的细胞外电子转移。本工作首次展示了MnFe2O4 NPs/PANI的双重性质,即作为阴极催化剂和阳极改性剂,从而有望实现具有成本效益的MFCs用于实际应用。