Suppr超能文献

相似文献

1
Identification of hierarchical chromatin domains.
Bioinformatics. 2016 Jun 1;32(11):1601-9. doi: 10.1093/bioinformatics/btv485. Epub 2015 Aug 26.
2
3
MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions.
PLoS Comput Biol. 2017 Jul 24;13(7):e1005647. doi: 10.1371/journal.pcbi.1005647. eCollection 2017 Jul.
4
A Comparison of Topologically Associating Domain Callers Based on Hi-C Data.
IEEE/ACM Trans Comput Biol Bioinform. 2023 Jan-Feb;20(1):15-29. doi: 10.1109/TCBB.2022.3147805. Epub 2023 Feb 3.
5
TADKB: Family classification and a knowledge base of topologically associating domains.
BMC Genomics. 2019 Mar 14;20(1):217. doi: 10.1186/s12864-019-5551-2.
6
Identifying topologically associating domains using differential kernels.
PLoS Comput Biol. 2024 Jul 15;20(7):e1012221. doi: 10.1371/journal.pcbi.1012221. eCollection 2024 Jul.
8
Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains.
Genome Res. 2016 Jan;26(1):70-84. doi: 10.1101/gr.196006.115. Epub 2015 Oct 30.
9
A comparison of topologically associating domain callers over mammals at high resolution.
BMC Bioinformatics. 2022 Apr 12;23(1):127. doi: 10.1186/s12859-022-04674-2.
10
Methods for the Analysis of Topologically Associating Domains (TADs).
Methods Mol Biol. 2022;2301:39-59. doi: 10.1007/978-1-0716-1390-0_3.

引用本文的文献

2
RobusTAD: reference panel based annotation of nested topologically associating domains.
Genome Biol. 2025 May 19;26(1):129. doi: 10.1186/s13059-025-03568-9.
4
Unraveling the three-dimensional genome structure using machine learning.
BMB Rep. 2025 May;58(5):203-208. doi: 10.5483/BMBRep.2024-0020.
5
The 3D genome and its impacts on human health and disease.
Life Med. 2023 Mar 23;2(2):lnad012. doi: 10.1093/lifemedi/lnad012. eCollection 2023 Apr.
6
Machine and Deep Learning Methods for Predicting 3D Genome Organization.
Methods Mol Biol. 2025;2856:357-400. doi: 10.1007/978-1-0716-4136-1_22.
7
[An identification method of chromatin topological associated domains based on spatial density clustering].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Jun 25;41(3):552-559. doi: 10.7507/1001-5515.202311059.
9
Genome structural dynamics: insights from Gaussian network analysis of Hi-C data.
Brief Funct Genomics. 2024 Sep 27;23(5):525-537. doi: 10.1093/bfgp/elae014.

本文引用的文献

2
Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci.
Nat Commun. 2015 Feb 19;6:6178. doi: 10.1038/ncomms7178.
3
A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.
Cell. 2014 Dec 18;159(7):1665-80. doi: 10.1016/j.cell.2014.11.021. Epub 2014 Dec 11.
4
Two-dimensional segmentation for analyzing Hi-C data.
Bioinformatics. 2014 Sep 1;30(17):i386-92. doi: 10.1093/bioinformatics/btu443.
5
Identification of alternative topological domains in chromatin.
Algorithms Mol Biol. 2014 May 3;9:14. doi: 10.1186/1748-7188-9-14. eCollection 2014.
6
Functional and topological characteristics of mammalian regulatory domains.
Genome Res. 2014 Mar;24(3):390-400. doi: 10.1101/gr.163519.113. Epub 2014 Jan 7.
7
Clustering of tissue-specific sub-TADs accompanies the regulation of HoxA genes in developing limbs.
PLoS Genet. 2013;9(12):e1004018. doi: 10.1371/journal.pgen.1004018. Epub 2013 Dec 26.
8
Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):996-1001. doi: 10.1073/pnas.1317788111. Epub 2013 Dec 13.
9
Single-cell Hi-C reveals cell-to-cell variability in chromosome structure.
Nature. 2013 Oct 3;502(7469):59-64. doi: 10.1038/nature12593. Epub 2013 Sep 25.
10
A switch between topological domains underlies HoxD genes collinearity in mouse limbs.
Science. 2013 Jun 7;340(6137):1234167. doi: 10.1126/science.1234167.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验