Suppr超能文献

CT 中的频率分离金属伪影减少技术(FSMAR)。

Frequency split metal artifact reduction (FSMAR) in computed tomography.

机构信息

Institute of Medical Physics, University of Erlangen-Nürnberg, Erlangen, Germany.

出版信息

Med Phys. 2012 Apr;39(4):1904-16. doi: 10.1118/1.3691902.

Abstract

PURPOSE

The problem of metal artifact reduction (MAR) is almost as old as the clinical use of computed tomography itself. When metal implants are present in the field of measurement, severe artifacts degrade the image quality and the diagnostic value of CT images. Up to now, no generally accepted solution to this issue has been found. In this work, a method based on a new MAR concept is presented: frequency split metal artifact reduction (FSMAR). It ensures efficient reduction of metal artifacts at high image quality with enhanced preservation of details close to metal implants.

METHODS

FSMAR combines a raw data inpainting-based MAR method with an image-based frequency split approach. Many typical methods for metal artifact reduction are inpainting-based MAR methods and simply replace unreliable parts of the projection data, for example, by linear interpolation. Frequency split approaches were used in CT, for example, by combining two reconstruction methods in order to reduce cone-beam artifacts. FSMAR combines the high frequencies of an uncorrected image, where all available data were used for the reconstruction with the more reliable low frequencies of an image which was corrected with an inpainting-based MAR method. The algorithm is tested in combination with normalized metal artifact reduction (NMAR) and with a standard inpainting-based MAR approach. NMAR is a more sophisticated inpainting-based MAR method, which introduces less new artifacts which may result from interpolation errors. A quantitative evaluation was performed using the examples of a simulation of the XCAT phantom and a scan of a spine phantom. Further evaluation includes patients with different types of metal implants: hip prostheses, dental fillings, neurocoil, and spine fixation, which were scanned with a modern clinical dual source CT scanner.

RESULTS

FSMAR ensures sharp edges and a preservation of anatomical details which is in many cases better than after applying an inpainting-based MAR method only. In contrast to other MAR methods, FSMAR yields images without the usual blurring close to implants.

CONCLUSIONS

FSMAR should be used together with NMAR, a combination which ensures an accurate correction of both high and low frequencies. The algorithm is computationally inexpensive compared to iterative methods and methods with complex inpainting schemes. No parameters were chosen manually; it is ready for an application in clinical routine.

摘要

目的

金属伪影降低(MAR)的问题几乎与计算机断层扫描(CT)的临床应用一样古老。当金属植入物存在于测量区域时,严重的伪影会降低 CT 图像的质量和诊断价值。到目前为止,尚未找到解决这个问题的普遍接受的方法。在这项工作中,提出了一种基于新的 MAR 概念的方法:频率分离金属伪影降低(FSMAR)。它确保了在高图像质量下高效降低金属伪影,同时增强了对靠近金属植入物的细节的保留。

方法

FSMAR 将基于原始数据的修补 MAR 方法与基于图像的频率分离方法相结合。许多典型的金属伪影降低方法都是基于修补的 MAR 方法,只是简单地通过线性插值等方式替换投影数据中不可靠的部分。频率分离方法在 CT 中得到了应用,例如,通过结合两种重建方法来降低锥形束伪影。FSMAR 结合了未经校正图像的高频部分,其中所有可用数据都用于重建,以及使用基于修补的 MAR 方法校正的图像的更可靠的低频部分。该算法与归一化金属伪影降低(NMAR)和标准基于修补的 MAR 方法相结合进行了测试。NMAR 是一种更复杂的基于修补的 MAR 方法,它引入的新伪影较少,这些伪影可能是由于插值误差引起的。使用 XCAT 体模的模拟和脊柱体模的扫描示例进行了定量评估。进一步的评估包括不同类型金属植入物的患者:髋关节假体、牙填充物、神经线圈和脊柱固定,这些患者使用现代临床双源 CT 扫描仪进行了扫描。

结果

FSMAR 确保了锐利的边缘和解剖细节的保留,在许多情况下,这比仅应用基于修补的 MAR 方法要好。与其他 MAR 方法相比,FSMAR 产生的图像在植入物附近没有通常的模糊。

结论

FSMAR 应与 NMAR 一起使用,这是一种确保高频和低频准确校正的组合。与迭代方法和具有复杂修补方案的方法相比,该算法的计算成本较低。没有手动选择参数;它已准备好在临床常规中应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验