Suppr超能文献

自动 2.5-D 面部地标定位和情感标注,用于社交互动辅助。

Automatic 2.5-D Facial Landmarking and Emotion Annotation for Social Interaction Assistance.

出版信息

IEEE Trans Cybern. 2016 Sep;46(9):2042-55. doi: 10.1109/TCYB.2015.2461131. Epub 2015 Aug 26.

Abstract

People with low vision, Alzheimer's disease, and autism spectrum disorder experience difficulties in perceiving or interpreting facial expression of emotion in their social lives. Though automatic facial expression recognition (FER) methods on 2-D videos have been extensively investigated, their performance was constrained by challenges in head pose and lighting conditions. The shape information in 3-D facial data can reduce or even overcome these challenges. However, high expenses of 3-D cameras prevent their widespread use. Fortunately, 2.5-D facial data from emerging portable RGB-D cameras provide a good balance for this dilemma. In this paper, we propose an automatic emotion annotation solution on 2.5-D facial data collected from RGB-D cameras. The solution consists of a facial landmarking method and a FER method. Specifically, we propose building a deformable partial face model and fit the model to a 2.5-D face for localizing facial landmarks automatically. In FER, a novel action unit (AU) space-based FER method has been proposed. Facial features are extracted using landmarks and further represented as coordinates in the AU space, which are classified into facial expressions. Evaluated on three publicly accessible facial databases, namely EURECOM, FRGC, and Bosphorus databases, the proposed facial landmarking and expression recognition methods have achieved satisfactory results. Possible real-world applications using our algorithms have also been discussed.

摘要

视力低下、患有老年痴呆症和自闭症谱系障碍的人在社交生活中会遇到感知或解释面部表情的困难。尽管二维视频上的自动面部表情识别(FER)方法已经得到了广泛的研究,但它们的性能受到头部姿势和光照条件的挑战的限制。三维面部数据中的形状信息可以减少甚至克服这些挑战。然而,三维相机的高成本阻碍了它们的广泛应用。幸运的是,新兴的便携式 RGB-D 相机提供的 2.5-D 面部数据为解决这一困境提供了良好的平衡。在本文中,我们提出了一种基于 RGB-D 相机采集的 2.5-D 面部数据的自动情感标注解决方案。该解决方案包括面部地标定位方法和 FER 方法。具体来说,我们提出了一种构建可变形部分人脸模型的方法,并通过该模型对 2.5-D 人脸进行拟合,以实现面部地标自动定位。在 FER 中,提出了一种基于新的动作单元(AU)空间的 FER 方法。使用地标提取面部特征,并进一步将其表示为 AU 空间中的坐标,然后将坐标分类为面部表情。在三个公开可用的面部数据库(即 EURECOM、FRGC 和 Bosphorus 数据库)上进行评估,所提出的面部地标定位和表情识别方法取得了令人满意的结果。还讨论了使用我们的算法进行的可能的实际应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验