Suppr超能文献

运动热调节反应中的解释方差:生物物理因素与健康/肥胖相关因素的独立作用。

Explained variance in the thermoregulatory responses to exercise: the independent roles of biophysical and fitness/fatness-related factors.

作者信息

Cramer Matthew N, Jay Ollie

机构信息

School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada; and.

School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada; and Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Sydney, Australia

出版信息

J Appl Physiol (1985). 2015 Nov 1;119(9):982-9. doi: 10.1152/japplphysiol.00281.2015. Epub 2015 Aug 27.

Abstract

Individual variation in the thermoregulatory responses to exercise is notoriously large. Although aerobic fitness (V̇o2 max) and body fatness are traditionally considered important predictors of individual core temperature and sweating responses, recent evidence indicates potentially important and independent roles for biophysical factors. Using stepwise regression, we examined the proportion of individual variability in rectal temperature changes (ΔTre), whole body sweat loss (WBSL), and steady-state local sweat rate (LSRss) independently described by 1) biophysical factors associated with metabolic heat production (Hprod) and evaporative heat balance requirements (Ereq) relative to body size and 2) factors independently related to V̇o2 max and body fatness. In a total of 69 trials, 28 males of wide-ranging morphological traits and V̇o2 max values cycled at workloads corresponding to a range of absolute Hprod (410-898 W) and relative intensities (32.2-82.0% V̇o2 max) for 60 min in 24.8 ± 0.7°C and 33.4 ± 12.2% relative humidity. Hprod (in W/kg total body mass) alone described ∼50% of the variability in ΔTre (adjusted to r(2) = 0.496; P < 0.001), whereas surface area-to-mass ratio and body fat percentage (BF%) explained an additional 4.3 and 2.3% of variability, respectively. For WBSL, Ereq (in W) alone explained ∼71% of variance (adjusted to r(2) = 0.713, P < 0.001), and the inclusion of BF% explained an additional 1.3%. Similarly, Ereq (in W/m(2)) correlated significantly with LSRss (adjusted to r(2) = 0.603, P < 0.001), whereas %V̇o2 max described an additional ∼4% of total variance. In conclusion, biophysical parameters related to Hprod, Ereq, and body size explain 54-71% of the individual variability in ΔTre, WBSL, and LSRss, and only 1-4% of additional variance is explained by factors related to fitness or fatness.

摘要

众所周知,个体对运动的体温调节反应差异极大。尽管传统上认为有氧适能(最大摄氧量)和体脂率是个体核心体温和出汗反应的重要预测指标,但最近的证据表明生物物理因素可能发挥着重要且独立的作用。我们采用逐步回归分析,研究了直肠温度变化(ΔTre)、全身出汗量(WBSL)和稳态局部出汗率(LSRss)的个体变异性中,分别由以下因素独立解释的比例:1)与相对于身体大小的代谢产热(Hprod)和蒸发散热平衡需求(Ereq)相关的生物物理因素,以及2)与最大摄氧量和体脂率独立相关的因素。在总共69次试验中,28名具有广泛形态特征和最大摄氧量值的男性,在24.8±0.7°C和33.4±12.2%相对湿度的环境下,以对应一系列绝对产热(410 - 898 W)和相对强度(32.2 - 82.0%最大摄氧量)的工作量进行60分钟的骑行。单独的Hprod(以W/千克总体重计)解释了ΔTre变异性的约50%(调整后r² = 0.496;P < 0.001),而表面积与质量比和体脂百分比(BF%)分别额外解释了4.3%和2.3%的变异性。对于WBSL,单独的Ereq(以W计)解释了约71%的方差(调整后r² = 0.713,P < 0.001),纳入BF%后又额外解释了1.3%。同样,Ereq(以W/m²计)与LSRss显著相关(调整后r² = 0.603,P < 0.001),而最大摄氧量百分比额外解释了约4%的总方差。总之,与Hprod、Ereq和身体大小相关的生物物理参数解释了ΔTre、WBSL和LSRss个体变异性的54 - 71%,而与适能或体脂相关的因素仅额外解释了1 - 4%的方差。

相似文献

1
Explained variance in the thermoregulatory responses to exercise: the independent roles of biophysical and fitness/fatness-related factors.
J Appl Physiol (1985). 2015 Nov 1;119(9):982-9. doi: 10.1152/japplphysiol.00281.2015. Epub 2015 Aug 27.
2
A comparison of thermoregulatory responses to exercise between mass-matched groups with large differences in body fat.
J Appl Physiol (1985). 2016 Mar 15;120(6):615-23. doi: 10.1152/japplphysiol.00906.2015. Epub 2015 Dec 23.
4
Running economy, not aerobic fitness, independently alters thermoregulatory responses during treadmill running.
J Appl Physiol (1985). 2014 Dec 15;117(12):1451-9. doi: 10.1152/japplphysiol.00665.2014. Epub 2014 Oct 9.
5
Independent Influence of Skin Temperature on Whole-Body Sweat Rate.
Med Sci Sports Exerc. 2020 Nov;52(11):2423-2429. doi: 10.1249/MSS.0000000000002381.
6
Thermoregulatory responses to exercise at a fixed rate of heat production are not altered by acute hypoxia.
J Appl Physiol (1985). 2017 May 1;122(5):1198-1207. doi: 10.1152/japplphysiol.00829.2016. Epub 2017 Mar 16.
9
Thermoeffector Responses at a Fixed Rate of Heat Production in Heart Failure Patients.
Med Sci Sports Exerc. 2018 Mar;50(3):417-426. doi: 10.1249/MSS.0000000000001455.
10
Selecting the correct exercise intensity for unbiased comparisons of thermoregulatory responses between groups of different mass and surface area.
J Appl Physiol (1985). 2014 May 1;116(9):1123-32. doi: 10.1152/japplphysiol.01312.2013. Epub 2014 Feb 6.

引用本文的文献

1
Physiological response to exercise in the heat: Implications for risk mitigation and adaptation.
Temperature (Austin). 2024 Nov 20;12(1):71-84. doi: 10.1080/23328940.2024.2431402. eCollection 2025.
2
Adaptive fabric with emissivity regulation for thermal management of humans.
Nanophotonics. 2024 Jun 3;13(17):3067-3075. doi: 10.1515/nanoph-2023-0930. eCollection 2024 Jul.
3
The effect of female breast surface area on heat-activated sweat gland density and output.
Exp Physiol. 2024 Aug;109(8):1330-1340. doi: 10.1113/EP091850. Epub 2024 Jun 7.
4
Caffeine ingestion compromises thermoregulation and does not improve cycling time to exhaustion in the heat amongst males.
Eur J Appl Physiol. 2024 Aug;124(8):2489-2502. doi: 10.1007/s00421-024-05460-z. Epub 2024 Apr 3.
6
A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 2: physiological measurements.
Eur J Appl Physiol. 2023 Dec;123(12):2587-2685. doi: 10.1007/s00421-023-05284-3. Epub 2023 Oct 5.
7
To the extreme! How biological anthropology can inform exercise physiology in extreme environments.
Comp Biochem Physiol A Mol Integr Physiol. 2023 Oct;284:111476. doi: 10.1016/j.cbpa.2023.111476. Epub 2023 Jul 7.
8
Beating the heat: military training and operations in the era of global warming.
J Appl Physiol (1985). 2023 Jul 1;135(1):60-67. doi: 10.1152/japplphysiol.00229.2023. Epub 2023 May 18.
10
Combining hypoxia with thermal stimuli in humans: physiological responses and potential sex differences.
Am J Physiol Regul Integr Comp Physiol. 2023 Jun 1;324(6):R677-R690. doi: 10.1152/ajpregu.00244.2021. Epub 2023 Mar 27.

本文引用的文献

1
Selecting the correct exercise intensity for unbiased comparisons of thermoregulatory responses between groups of different mass and surface area.
J Appl Physiol (1985). 2014 May 1;116(9):1123-32. doi: 10.1152/japplphysiol.01312.2013. Epub 2014 Feb 6.
2
Relative exercise intensity and core temperature in lean and obese children.
J Pediatr. 2013 Nov;163(5):1535-6. doi: 10.1016/j.jpeds.2013.07.041. Epub 2013 Sep 5.
4
A comparison between the technical absorbent and ventilated capsule methods for measuring local sweat rate.
J Appl Physiol (1985). 2013 Mar 15;114(6):816-23. doi: 10.1152/japplphysiol.01088.2012. Epub 2013 Jan 10.
5
Hydration for recreational sport and physical activity.
Nutr Rev. 2012 Nov;70 Suppl 2:S137-42. doi: 10.1111/j.1753-4887.2012.00523.x.
7
Influence of aerobic fitness on thermoregulation during exercise in the heat.
Exerc Sport Sci Rev. 2012 Apr;40(2):79-87. doi: 10.1097/JES.0b013e318246ee56.
8
Sex modulates whole-body sudomotor thermosensitivity during exercise.
J Physiol. 2011 Dec 15;589(Pt 24):6205-17. doi: 10.1113/jphysiol.2011.219220. Epub 2011 Oct 17.
9
Large differences in peak oxygen uptake do not independently alter changes in core temperature and sweating during exercise.
Am J Physiol Regul Integr Comp Physiol. 2011 Sep;301(3):R832-41. doi: 10.1152/ajpregu.00257.2011. Epub 2011 Jun 22.
10
Relevance of individual characteristics for thermoregulation during exercise in a hot-dry environment.
Eur J Appl Physiol. 2011 Sep;111(9):2173-81. doi: 10.1007/s00421-011-1847-x. Epub 2011 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验