Patel Chirag, Sugimoto Keiichiro, Douard Veronique, Shah Ami, Inui Hiroshi, Yamanouchi Toshikazu, Ferraris Ronaldo P
Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey;
Research and Development Center, Nagaoka Perfumery Co., Ltd., Ibaraki, Osaka, Japan; Center for Research and Development of Bioresources, Osaka Prefecture University, Sakai, Osaka, Japan;
Am J Physiol Gastrointest Liver Physiol. 2015 Nov 1;309(9):G779-90. doi: 10.1152/ajpgi.00188.2015. Epub 2015 Aug 27.
Elevated blood fructose concentrations constitute the basis for organ dysfunction in fructose-induced metabolic syndrome. We hypothesized that diet-induced changes in blood fructose concentrations are regulated by ketohexokinase (KHK) and the fructose transporter GLUT5. Portal and systemic fructose concentrations determined by HPLC in wild-type mice fed for 7 days 0% free fructose were <0.07 mM, were independent of time after feeding, were similar to those of GLUT5(-/-), and did not lead to hyperglycemia. Postprandial fructose levels, however, increased markedly in those fed isocaloric 20% fructose, causing significant hyperglycemia. Deletion of KHK prevented fructose-induced hyperglycemia, but caused dramatic hyperfructosemia (>1 mM) with reversed portal to systemic gradients. Systemic fructose in wild-type and KHK(-/-) mice changed by 0.34 and 1.8 mM, respectively, for every millimolar increase in portal fructose concentration. Systemic glucose varied strongly with systemic, but not portal, fructose levels in wild-type, and was independent of systemic and portal fructose in KHK(-/-), mice. With ad libitum feeding for 12 wk, fructose-induced hyperglycemia in wild-type, but not hyperfructosemia in KHK(-/-) mice, increased HbA1c concentrations. Increasing dietary fructose to 40% intensified the hyperfructosemia of KHK(-/-) and the fructose-induced hyperglycemia of wild-type mice. Fructose perfusion or feeding in rats also caused duration- and dose-dependent hyperfructosemia and hyperglycemia. Significant levels of blood fructose are maintained independent of dietary fructose, KHK, and GLUT5, probably by endogenous synthesis of fructose. KHK prevents hyperfructosemia and fructose-induced hyperglycemia that would markedly increase HbA1c levels. These findings explain the hyperfructosemia of human hereditary fructosuria as well as the hyperglycemia of fructose-induced metabolic syndrome.
血液中果糖浓度升高是果糖诱导的代谢综合征中器官功能障碍的基础。我们推测,饮食引起的血液果糖浓度变化受己酮糖激酶(KHK)和果糖转运体GLUT5调控。通过高效液相色谱法测定,喂食7天0%游离果糖的野生型小鼠门静脉和全身的果糖浓度<0.07 mM,与喂食时间无关,与GLUT5基因敲除小鼠的果糖浓度相似,且未导致高血糖。然而,喂食等热量20%果糖的小鼠餐后果糖水平显著升高,导致明显的高血糖。敲除KHK可预防果糖诱导的高血糖,但会导致显著的高果糖血症(>1 mM),门静脉与全身的梯度发生逆转。门静脉果糖浓度每增加1 mM,野生型和KHK基因敲除小鼠的全身果糖浓度分别变化0.34 mM和1.8 mM。野生型小鼠的全身葡萄糖水平随全身果糖水平强烈变化,但不随门静脉果糖水平变化,而在KHK基因敲除小鼠中,全身葡萄糖水平与全身和门静脉果糖水平无关。自由采食12周后,野生型小鼠果糖诱导的高血糖会增加糖化血红蛋白(HbA1c)浓度,但KHK基因敲除小鼠的高果糖血症不会。将饮食中的果糖增加到40%会加剧KHK基因敲除小鼠的高果糖血症和野生型小鼠果糖诱导的高血糖。给大鼠灌注或喂食果糖也会导致高果糖血症和高血糖,且具有时间和剂量依赖性。血液中果糖的显著水平可能通过内源性果糖合成得以维持,与饮食中的果糖、KHK和GLUT5无关。KHK可预防高果糖血症和果糖诱导的高血糖,而后者会显著增加HbA1c水平。这些发现解释了人类遗传性果糖不耐受症的高果糖血症以及果糖诱导的代谢综合征的高血糖症。