Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Newark, New Jersey, United States of America.
Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America.
PLoS One. 2014 Apr 9;9(4):e93611. doi: 10.1371/journal.pone.0093611. eCollection 2014.
Excessive fructose consumption inhibits adaptive increases in intestinal Ca2+ transport in lactating and weanling rats with increased Ca2+ requirements by preventing the increase in serum levels of 1,25(OH)2D3. Here we tested the hypothesis that chronic fructose intake decreases 1,25(OH)2D3 levels independent of increases in Ca2+ requirements. Adult mice fed for five wk a high glucose-low Ca2+ diet displayed expected compensatory increases in intestinal and renal Ca2+ transporter expression and activity, in renal CYP27B1 (coding for 1α-hydroxylase) expression as well as in serum 1,25(OH)2D3 levels, compared with mice fed isocaloric glucose- or fructose-normal Ca2+ diets. Replacing glucose with fructose prevented these increases in Ca2+ transporter, CYP27B1, and 1,25(OH)2D3 levels induced by a low Ca2+ diet. In adult mice fed for three mo a normal Ca2+ diet, renal expression of CYP27B1 and of CYP24A1 (24-hydroxylase) decreased and increased, respectively, when the carbohydrate source was fructose instead of glucose or starch. Intestinal and renal Ca2+ transporter activity and expression did not vary with dietary carbohydrate. To determine the time course of fructose effects, a high fructose or glucose diet with normal Ca2+ levels was fed to adult rats for three mo. Serum levels of 1,25(OH)2D3 decreased and of FGF23 increased significantly over time. Renal expression of CYP27B1 and serum levels of 1,25(OH)2D3 still decreased in fructose- compared to those in glucose-fed rats after three mo. Serum parathyroid hormone, Ca2+ and phosphate levels were normal and independent of dietary sugar as well as time of feeding. Thus, chronically high fructose intakes can decrease serum levels of 1,25(OH)2D3 in adult rodents experiencing no Ca2+ stress and fed sufficient levels of dietary Ca2+. This finding is highly significant because fructose constitutes a substantial portion of the average diet of Americans already deficient in vitamin D.
过量的果糖摄入可通过阻止血清 1,25(OH)2D3 水平的增加来抑制哺乳期和断奶期大鼠肠道 Ca2+转运的适应性增加,而这些大鼠对 Ca2+的需求增加。在这里,我们测试了一个假设,即慢性果糖摄入会降低血清 1,25(OH)2D3 水平,而与 Ca2+需求的增加无关。与喂食等热量葡萄糖或果糖正常 Ca2+饮食的小鼠相比,喂食高葡萄糖-低 Ca2+饮食 5 周的成年小鼠显示出肠道和肾脏 Ca2+转运体表达和活性、肾脏 CYP27B1(编码 1α-羟化酶)表达以及血清 1,25(OH)2D3 水平的预期代偿性增加。用果糖替代葡萄糖可防止低 Ca2+饮食引起的 Ca2+转运体、CYP27B1 和 1,25(OH)2D3 水平的增加。在喂食正常 Ca2+饮食 3 个月的成年小鼠中,当碳水化合物来源为果糖而不是葡萄糖或淀粉时,肾脏 CYP27B1 和 CYP24A1(24-羟化酶)的表达分别降低和增加。肠道和肾脏 Ca2+转运体的活性和表达与饮食碳水化合物无关。为了确定果糖作用的时间过程,成年大鼠喂食高果糖或葡萄糖饮食,正常 Ca2+水平 3 个月。血清 1,25(OH)2D3 水平随时间显著降低,FGF23 水平升高。与葡萄糖喂养的大鼠相比,在 3 个月后,果糖喂养的大鼠的肾脏 CYP27B1 表达和血清 1,25(OH)2D3 水平仍降低。血清甲状旁腺激素、Ca2+和磷酸盐水平正常,与饮食糖以及喂养时间无关。因此,在没有 Ca2+应激且摄入足够饮食 Ca2+的成年啮齿动物中,长期摄入高果糖会降低血清 1,25(OH)2D3 水平。这一发现非常重要,因为果糖在美国人的饮食中占很大一部分,而美国人已经缺乏维生素 D。