Qiao Xin, Jeon Jaekyun, Weber Jeff, Zhu Fangqiang, Chen Bo
Department of Physics, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA.
Department of Physics, Indiana University - Purdue University Indianapolis, IN, USA.
Biochim Biophys Acta. 2015 Nov;1850(11):2353-67. doi: 10.1016/j.bbagen.2015.08.017. Epub 2015 Aug 28.
During the maturation process, HIV capsid proteins self-assemble into polymorphic capsids. The strong polymorphism precludes high resolution structural characterization under in vivo conditions. In spite of the determination of structural models for various in vitro assemblies of HIV capsid proteins, the assembly mechanism is still not well-understood.
We report 3D simulations of HIV capsid proteins by a novel coarse grain model that captures the backbone of the rigid segments in the protein accurately. The effects of protein dynamics on assembly are emulated by a static ensemble of subunits in conformations derived from molecular dynamics simulation.
We show that HIV capsid proteins robustly assemble into hexameric lattices in a range of conditions where trimers of dimeric subunits are the dominant oligomeric intermediates. Variations of hexameric lattice curvatures are observed in simulations with subunits of variable inter-domain orientations mimicking the conformation distribution in solution. Simulations with subunits based on pentameric structural models lead to assembly of sharp curved structures resembling the tips of authentic HIV capsids, along a distinct pathway populated by tetramers and pentamers with the characteristic quasi-equivalency of viral capsids.
Our results suggest that the polymorphism assembly is triggered by the inter-domain dynamics of HIV capsid proteins in solution. The assembly of highly curved structures arises from proteins in conformation with a highly specific inter-domain orientation.
Our work proposes a mechanism of HIV capsid assembly based on available structural data, which can be readily verified. Our model can be applied to other large biomolecular assemblies.
在成熟过程中,HIV衣壳蛋白会自组装成多态性衣壳。强烈的多态性使得在体内条件下难以进行高分辨率的结构表征。尽管已经确定了HIV衣壳蛋白各种体外组装的结构模型,但组装机制仍未得到很好的理解。
我们通过一种新颖的粗粒度模型报告了HIV衣壳蛋白的三维模拟,该模型能够准确捕捉蛋白质中刚性片段的主链。蛋白质动力学对组装的影响通过源自分子动力学模拟的构象中的亚基静态集合来模拟。
我们表明,在一系列条件下,HIV衣壳蛋白能够稳健地组装成六聚体晶格,其中二聚体亚基的三聚体是主要的寡聚中间体。在模拟中观察到六聚体晶格曲率的变化,这些模拟使用了具有可变域间取向的亚基,以模拟溶液中的构象分布。基于五聚体结构模型的亚基模拟导致形成尖锐弯曲结构的组装,类似于真实HIV衣壳的尖端,沿着由具有病毒衣壳特征准等效性的四聚体和五聚体组成的独特途径。
我们的结果表明,多态性组装是由溶液中HIV衣壳蛋白的域间动力学触发的。高度弯曲结构的组装源于具有高度特异性域间取向的构象中的蛋白质。
我们的工作基于现有的结构数据提出了一种HIV衣壳组装机制,该机制易于验证。我们的模型可应用于其他大型生物分子组装。