Feeny Albert K, Tadarati Mongkol, Freund David E, Bressler Neil M, Burlina Philippe
Applied Physics Laboratory, The Johns Hopkins University, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University, MD, USA.
Retina Division, Wilmer Eye Institute, The Johns Hopkins University, MD, USA; Rajavithi Hospital, College of Medicine, Rangsit University, Bangkok, Thailand.
Comput Biol Med. 2015 Oct 1;65:124-36. doi: 10.1016/j.compbiomed.2015.06.018. Epub 2015 Jul 9.
Age-related macular degeneration (AMD), left untreated, is the leading cause of vision loss in people older than 55. Severe central vision loss occurs in the advanced stage of the disease, characterized by either the in growth of choroidal neovascularization (CNV), termed the "wet" form, or by geographic atrophy (GA) of the retinal pigment epithelium (RPE) involving the center of the macula, termed the "dry" form. Tracking the change in GA area over time is important since it allows for the characterization of the effectiveness of GA treatments. Tracking GA evolution can be achieved by physicians performing manual delineation of GA area on retinal fundus images. However, manual GA delineation is time-consuming and subject to inter-and intra-observer variability.
We have developed a fully automated GA segmentation algorithm in color fundus images that uses a supervised machine learning approach employing a random forest classifier. This algorithm is developed and tested using a dataset of images from the NIH-sponsored Age Related Eye Disease Study (AREDS). GA segmentation output was compared against a manual delineation by a retina specialist.
Using 143 color fundus images from 55 different patient eyes, our algorithm achieved PPV of 0.82±0.19, and NPV of 0:95±0.07.
This is the first study, to our knowledge, applying machine learning methods to GA segmentation on color fundus images and using AREDS imagery for testing. These preliminary results show promising evidence that machine learning methods may have utility in automated characterization of GA from color fundus images.
年龄相关性黄斑变性(AMD)若不治疗,是55岁以上人群视力丧失的主要原因。严重的中心视力丧失发生在疾病的晚期,其特征为脉络膜新生血管(CNV)向内生长,即“湿性”形式,或视网膜色素上皮(RPE)的地图样萎缩(GA)累及黄斑中心,即“干性”形式。随着时间追踪GA面积的变化很重要,因为这有助于确定GA治疗的效果。追踪GA的演变可通过医生在视网膜眼底图像上手动描绘GA区域来实现。然而,手动描绘GA区域既耗时,又存在观察者间和观察者内的差异。
我们开发了一种用于彩色眼底图像的全自动GA分割算法,该算法采用监督式机器学习方法并使用随机森林分类器。此算法是利用美国国立卫生研究院资助的年龄相关性眼病研究(AREDS)的图像数据集开发和测试的。将GA分割输出与视网膜专家的手动描绘结果进行比较。
使用来自55只不同患者眼睛的143张彩色眼底图像,我们的算法实现了0.82±0.19的阳性预测值(PPV)和0.95±0.07的阴性预测值(NPV)。
据我们所知,这是第一项将机器学习方法应用于彩色眼底图像的GA分割并使用AREDS图像进行测试的研究。这些初步结果显示了有希望的证据,表明机器学习方法可能有助于从彩色眼底图像中自动识别GA。