Suppr超能文献

对眼底图像系列进行归一化处理,以监测干性年龄相关性黄斑变性的地理萎缩进展。

Normalization of series of fundus images to monitor the geographic atrophy growth in dry age-related macular degeneration.

机构信息

ISEP, Institut Supérieur d'Electronique de Paris, 10 rue de Vanves, 92130 Issy-les-Moulineaux, France.

Clinical Investigation Center 1423, Quinze-Vingts Hospital, 28 rue de Charenton, 75012 Paris, France.

出版信息

Comput Methods Programs Biomed. 2021 Sep;208:106234. doi: 10.1016/j.cmpb.2021.106234. Epub 2021 Jun 12.

Abstract

BACKGROUND AND OBJECTIVE

Age-related macular degeneration (ARMD) is a degenerative disease that affects the retina, and the leading cause of visual loss. In its dry form, the pathology is characterized by the progressive, centrifugal expansion of retinal lesions, called geographic atrophy (GA). In infrared eye fundus images, the GA appears as localized bright areas and its growth can be observed in series of images acquired at regular time intervals. However, illumination distortions between the images make impossible the direct comparison of intensities in order to study the GA progress. Here, we propose a new method to compensate for illumination distortion between images.

METHODS

We process all images of the series so that any two images have comparable gray levels. Our approach relies on an illumination/reflectance model. We first estimate the pixel-wise illumination ratio between any two images of the series, in a recursive way; then we correct each image against all the others, based on those estimates. The algorithm is applied on a sliding temporal window to cope with large changes in reflectance. We also propose morphological processing to suppress illumination artefacts.

RESULTS

The corrected illumination function is homogeneous in the series, enabling the direct comparison of grey-levels intensities in each pixel, and so the detection of the GA growth between any two images. To demonstrate that, we present numerous experiments performed on a dataset of 18 series (328 images), manually segmented by an ophthalmologist. First, we show that the normalization preprocessing dramatically increases the contrast of the GA growth areas. Secondly, we apply segmentation algorithms derived from Otsu's thresholding to detect automatically the GA total growth and the GA progress between consecutive images. We demonstrate qualitatively and quantitatively that these algorithms, although fully automatic, unsupervised and basic, already lead to interesting segmentation results when applied to the normalized images. Colored maps representing the GA evolution can be derived from the segmentations.

CONCLUSION

To our knowledge, the proposed method is the first one which corrects automatically and jointly the illumination inhomogeneity in a series of fundus images, regardless of the number of images, the size, shape and progression of lesion areas. This algorithm greatly facilitates the visual interpretation by the medical expert. It opens up the possibility of treating automatically each series as a whole (not just in pairs of images) to model the GA growth.

摘要

背景与目的

年龄相关性黄斑变性(AMD)是一种影响视网膜的退行性疾病,是视力丧失的主要原因。在干性形式中,病理学的特征是视网膜病变的渐进性、离心性扩张,称为地图样萎缩(GA)。在红外眼底图像中,GA 表现为局部明亮区域,其生长可以在定期时间间隔获取的一系列图像中观察到。然而,图像之间的照明失真使得不可能直接比较强度以研究 GA 的进展。在这里,我们提出了一种新的方法来补偿图像之间的照明失真。

方法

我们处理系列中的所有图像,以使任意两幅图像具有可比的灰度级。我们的方法依赖于照明/反射模型。我们首先以递归的方式估计序列中任意两幅图像之间的像素级照明比;然后根据这些估计值对每幅图像进行校正。该算法应用于滑动时间窗口,以应对反射率的大变化。我们还提出了形态处理来抑制照明伪影。

结果

在系列中,校正后的照明函数是均匀的,能够直接比较每个像素的灰度级强度,从而检测 GA 在任意两幅图像之间的生长。为了证明这一点,我们展示了在由眼科医生手动分割的 18 个系列(328 张图像)数据集上进行的大量实验。首先,我们表明归一化预处理极大地增加了 GA 生长区域的对比度。其次,我们应用源自 Otsu 阈值的分割算法自动检测 GA 的总生长和连续图像之间的 GA 进展。我们定性和定量地证明,这些算法虽然是全自动的、无监督的和基本的,但当应用于归一化图像时,已经可以得到有趣的分割结果。可以从分割中得出代表 GA 演变的彩色地图。

结论

据我们所知,所提出的方法是第一个自动且联合校正眼底图像系列中照明不均匀性的方法,无论图像数量、病变区域的大小、形状和进展如何。该算法极大地促进了医学专家的视觉解释。它开辟了自动处理整个系列(不仅仅是一对图像)的可能性,以模拟 GA 的生长。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验