Suppr超能文献

开发多元线性回归模型作为德国下莱纳河一段粪便指示剂浓度的预测工具。

Development of multiple linear regression models as predictive tools for fecal indicator concentrations in a stretch of the lower Lahn River, Germany.

机构信息

Federal Institute of Hydrology, Department G3 - Bio-Chemistry, Ecotoxicology, Am Mainzer Tor 1, 56068 Koblenz, Germany; University of Koblenz-Landau, Department of Biology, Institute of Integrated Natural Sciences, Universitätsstraße 1, 56070 Koblenz, Germany.

Federal Institute of Hydrology, Department G3 - Bio-Chemistry, Ecotoxicology, Am Mainzer Tor 1, 56068 Koblenz, Germany.

出版信息

Water Res. 2015 Nov 15;85:148-57. doi: 10.1016/j.watres.2015.08.006. Epub 2015 Aug 5.

Abstract

Since rivers are typically subject to rapid changes in microbiological water quality, tools are needed to allow timely water quality assessment. A promising approach is the application of predictive models. In our study, we developed multiple linear regression (MLR) models in order to predict the abundance of the fecal indicator organisms Escherichia coli (EC), intestinal enterococci (IE) and somatic coliphages (SC) in the Lahn River, Germany. The models were developed on the basis of an extensive set of environmental parameters collected during a 12-months monitoring period. Two models were developed for each type of indicator: 1) an extended model including the maximum number of variables significantly explaining variations in indicator abundance and 2) a simplified model reduced to the three most influential explanatory variables, thus obtaining a model which is less resource-intensive with regard to required data. Both approaches have the ability to model multiple sites within one river stretch. The three most important predictive variables in the optimized models for the bacterial indicators were NH4-N, turbidity and global solar irradiance, whereas chlorophyll a content, discharge and NH4-N were reliable model variables for somatic coliphages. Depending on indicator type, the extended mode models also included the additional variables rainfall, O2 content, pH and chlorophyll a. The extended mode models could explain 69% (EC), 74% (IE) and 72% (SC) of the observed variance in fecal indicator concentrations. The optimized models explained the observed variance in fecal indicator concentrations to 65% (EC), 70% (IE) and 68% (SC). Site-specific efficiencies ranged up to 82% (EC) and 81% (IE, SC). Our results suggest that MLR models are a promising tool for a timely water quality assessment in the Lahn area.

摘要

由于河流的微生物水质通常会迅速变化,因此需要有工具来及时进行水质评估。一种很有前途的方法是应用预测模型。在我们的研究中,我们开发了多元线性回归(MLR)模型,以便预测德国拉恩河中的粪便指示生物大肠杆菌(EC)、肠道肠球菌(IE)和体噬菌体(SC)的丰度。这些模型是基于在 12 个月的监测期间收集的大量环境参数开发的。为每种类型的指示生物开发了两个模型:1)一个扩展模型,其中包含可显著解释指示生物丰度变化的最大数量的变量;2)一个简化模型,减少到三个最具影响力的解释变量,从而获得一个资源密集度较低的模型,所需数据较少。这两种方法都能够对一条河流段内的多个地点进行建模。在细菌指示物的优化模型中,三个最重要的预测变量是 NH4-N、浊度和总太阳辐射,而叶绿素 a 含量、流量和 NH4-N 是体噬菌体可靠的模型变量。根据指示物类型,扩展模式模型还包括降雨量、O2 含量、pH 值和叶绿素 a 等附加变量。扩展模式模型可以解释观察到的粪便指示物浓度的 69%(EC)、74%(IE)和 72%(SC)。优化模型解释了观察到的粪便指示物浓度的 65%(EC)、70%(IE)和 68%(SC)。特定地点的效率高达 82%(EC)和 81%(IE、SC)。我们的结果表明,MLR 模型是拉恩地区及时水质评估的一种很有前途的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验