Institute for Environmental Studies (IVM), VU University Amsterdam, The Netherlands.
Department of Geography, Texas A&M University, College Station, USA.
Sci Total Environ. 2015 Dec 15;538:445-57. doi: 10.1016/j.scitotenv.2015.08.068. Epub 2015 Aug 28.
An accurate understanding of flood risk and its drivers is crucial for effective risk management. Detailed risk projections, including uncertainties, are however rarely available, particularly in developing countries. This paper presents a method that integrates recent advances in global-scale modeling of flood hazard and land change, which enables the probabilistic analysis of future trends in national-scale flood risk. We demonstrate its application to Indonesia. We develop 1000 spatially-explicit projections of urban expansion from 2000 to 2030 that account for uncertainty associated with population and economic growth projections, as well as uncertainty in where urban land change may occur. The projections show that the urban extent increases by 215%-357% (5th and 95th percentiles). Urban expansion is particularly rapid on Java, which accounts for 79% of the national increase. From 2000 to 2030, increases in exposure will elevate flood risk by, on average, 76% and 120% for river and coastal floods. While sea level rise will further increase the exposure-induced trend by 19%-37%, the response of river floods to climate change is highly uncertain. However, as urban expansion is the main driver of future risk, the implementation of adaptation measures is increasingly urgent, regardless of the wide uncertainty in climate projections. Using probabilistic urban projections, we show that spatial planning can be a very effective adaptation strategy. Our study emphasizes that global data can be used successfully for probabilistic risk assessment in data-scarce countries.
准确理解洪水风险及其驱动因素对于有效的风险管理至关重要。然而,详细的风险预测,包括不确定性,很少有国家能够提供,尤其是在发展中国家。本文提出了一种方法,该方法集成了洪水灾害和土地变化的全球尺度建模的最新进展,从而能够对国家尺度洪水风险的未来趋势进行概率分析。我们以印度尼西亚为例演示了该方法的应用。我们针对 2000 年至 2030 年的城市扩张进行了 1000 次空间明确的预测,这些预测考虑了与人口和经济增长预测相关的不确定性,以及城市土地变化可能发生的不确定性。这些预测表明,城市范围增加了 215%-357%(第 5 和第 95 个百分位数)。爪哇岛的城市扩张尤为迅速,占全国增长的 79%。从 2000 年到 2030 年,暴露程度的增加将使河流洪水和沿海洪水的风险分别平均增加 76%和 120%。虽然海平面上升将使暴露引起的趋势进一步增加 19%-37%,但气候变化对河流洪水的响应具有高度不确定性。然而,由于城市扩张是未来风险的主要驱动因素,因此无论气候预测存在广泛的不确定性,实施适应措施都变得越来越紧迫。我们利用概率性城市扩张预测,展示了空间规划可以成为一种非常有效的适应策略。我们的研究强调,全球数据可成功用于数据匮乏国家的概率风险评估。