Zhong Zhenhui, Norvienyeku Justice, Yu Jie, Chen Meilian, Cai Renli, Hong Yonghe, Chen Liqiong, Zhang Dongmei, Wang Baohua, Zhou Jie, Lu Guodong, Chen Xiaofeng, Wang Zonghua
Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Fungal Genet Biol. 2015 Oct;83:58-67. doi: 10.1016/j.fgb.2015.08.008. Epub 2015 Aug 25.
The mevalonate pathway is an efficient biosynthesis pathway that yields isoprenoids for promoting different crucial cellular functions, including ergosterol synthesis and growth regulation. Acetoacetyl-CoA acetyltransferase (EC2.3.1.9) is the first major catalytic enzyme constituting the mevalonate pathway and catalyzes the transformation of Acetoacetyl-CoA from two molecules of acetyl-CoA enroute ergosterol production in fungi. We identified two homologous genes encoding Acetoacetyl-CoA acetyltransferase (MoAcat1 and MoAcat2) in Magnaporthe oryzae, the rice blast fungus. Phylogenetic analysis indicates these two genes have different evolutionary history. We subsequently, conducted targeted gene deletion using homologous recombination technology to ascertain the unique roles of the two MoAcat homologues during the fungal morphogenesis and pathogenesis. The findings from our investigations showed that the activity of MoAcat1 promoted virulence in the rice blast fungus as such, the ΔMoacat1 mutants generated exhibited defect in virulence, whilst ΔMoacat1 mutants did not portray growth defects. ΔMoacat2 mutants on the other hand were characterized by reduction in growth and virulence. Furthermore, MoAcat1 and MoAcat2 showed different expression patterns and subcellular localizations in M. oryzae. From our investigations we came to the conclusion that, different subcellular localization contributes to the diverse functions of MoAcat1 and MoAcat2, which helps the successful establishment of blast disease by promoting efficient development of cell morphology and effective colonization of host tissue.
甲羟戊酸途径是一条高效的生物合成途径,可产生类异戊二烯以促进不同的关键细胞功能,包括麦角固醇合成和生长调节。乙酰乙酰辅酶A乙酰转移酶(EC2.3.1.9)是构成甲羟戊酸途径的第一种主要催化酶,在真菌麦角固醇生成过程中催化两分子乙酰辅酶A转化为乙酰乙酰辅酶A。我们在稻瘟病菌Magnaporthe oryzae中鉴定出两个编码乙酰乙酰辅酶A乙酰转移酶的同源基因(MoAcat1和MoAcat2)。系统发育分析表明这两个基因具有不同的进化历史。随后,我们使用同源重组技术进行了靶向基因缺失,以确定这两个MoAcat同源物在真菌形态发生和致病过程中的独特作用。我们的研究结果表明,MoAcat1的活性促进了稻瘟病菌的毒力,因此,产生的ΔMoacat1突变体在毒力方面存在缺陷,而ΔMoacat1突变体没有表现出生长缺陷。另一方面,ΔMoacat2突变体的特征是生长和毒力降低。此外,MoAcat1和MoAcat2在稻瘟病菌中表现出不同的表达模式和亚细胞定位。从我们的研究中我们得出结论,不同的亚细胞定位导致了MoAcat1和MoAcat2的多种功能,这通过促进细胞形态的有效发育和宿主组织的有效定殖,有助于稻瘟病的成功发生。