Sandrini Giovanni, Jakupovic Dennis, Matthijs Hans C P, Huisman Jef
Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
Appl Environ Microbiol. 2015 Nov;81(22):7730-9. doi: 10.1128/AEM.02295-15. Epub 2015 Aug 28.
Cyanobacteria are generally assumed to be effective competitors at low CO2 levels because of their efficient CO2-concentrating mechanism (CCM), and yet how bloom-forming cyanobacteria respond to rising CO2 concentrations is less clear. Here, we investigate changes in CCM gene expression at ambient CO2 (400 ppm) and elevated CO2 (1,100 ppm) in six strains of the harmful cyanobacterium Microcystis. All strains downregulated cmpA encoding the high-affinity bicarbonate uptake system BCT1, whereas both the low- and high-affinity CO2 uptake genes were expressed constitutively. Four strains downregulated the bicarbonate uptake genes bicA and/or sbtA, whereas two strains showed constitutive expression of the bicA-sbtA operon. In one of the latter strains, a transposon insert in bicA caused low bicA and sbtA transcript levels, which made this strain solely dependent on BCT1 for bicarbonate uptake. Activity measurements of the inorganic carbon (Ci) uptake systems confirmed the CCM gene expression results. Interestingly, genes encoding the RuBisCO enzyme, structural carboxysome components, and carbonic anhydrases were not regulated. Hence, Microcystis mainly regulates the initial uptake of inorganic carbon, which might be an effective strategy for a species experiencing strongly fluctuating Ci concentrations. Our results show that CCM gene regulation of Microcystis varies among strains. The observed genetic and phenotypic variation in CCM responses may offer an important template for natural selection, leading to major changes in the genetic composition of harmful cyanobacterial blooms at elevated CO2.
由于具有高效的二氧化碳浓缩机制(CCM),蓝藻通常被认为在低二氧化碳水平下是有效的竞争者,然而,形成水华的蓝藻如何应对不断上升的二氧化碳浓度尚不清楚。在这里,我们研究了六种有害蓝藻微囊藻菌株在环境二氧化碳(400 ppm)和升高的二氧化碳(1100 ppm)条件下CCM基因表达的变化。所有菌株均下调了编码高亲和力碳酸氢盐摄取系统BCT1的cmpA,而低亲和力和高亲和力二氧化碳摄取基因均持续表达。四种菌株下调了碳酸氢盐摄取基因bicA和/或sbtA,而两种菌株显示bicA - sbtA操纵子的组成型表达。在后者的其中一种菌株中,bicA中的转座子插入导致bicA和sbtA转录水平较低,这使得该菌株仅依赖BCT1进行碳酸氢盐摄取。无机碳(Ci)摄取系统的活性测量证实了CCM基因表达结果。有趣的是,编码核酮糖-1,5-二磷酸羧化酶(RuBisCO)、结构羧酶体成分和碳酸酐酶的基因未受调控。因此,微囊藻主要调节无机碳的初始摄取,这可能是该物种应对Ci浓度剧烈波动的有效策略。我们的结果表明,微囊藻的CCM基因调控在不同菌株间存在差异。在CCM反应中观察到的遗传和表型变异可能为自然选择提供重要模板,导致在二氧化碳升高时有害蓝藻水华的遗传组成发生重大变化。