Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
ISME J. 2014 Mar;8(3):589-600. doi: 10.1038/ismej.2013.179. Epub 2013 Oct 17.
Rising CO2 levels may act as an important selective factor on the CO2-concentrating mechanism (CCM) of cyanobacteria. We investigated genetic diversity in the CCM of Microcystis aeruginosa, a species producing harmful cyanobacterial blooms in many lakes worldwide. All 20 investigated Microcystis strains contained complete genes for two CO2 uptake systems, the ATP-dependent bicarbonate uptake system BCT1 and several carbonic anhydrases (CAs). However, 12 strains lacked either the high-flux bicarbonate transporter BicA or the high-affinity bicarbonate transporter SbtA. Both genes, bicA and sbtA, were located on the same operon, and the expression of this operon is most likely regulated by an additional LysR-type transcriptional regulator (CcmR2). Strains with only a small bicA fragment clustered together in the phylogenetic tree of sbtAB, and the bicA fragments were similar in strains isolated from different continents. This indicates that a common ancestor may first have lost most of its bicA gene and subsequently spread over the world. Growth experiments showed that strains with sbtA performed better at low inorganic carbon (Ci) conditions, whereas strains with bicA performed better at high Ci conditions. This offers an alternative explanation of previous competition experiments, as our results reveal that the competition at low CO2 levels was won by a specialist with only sbtA, whereas a generalist with both bicA and sbtA won at high CO2 levels. Hence, genetic and phenotypic variation in Ci uptake systems provide Microcystis with the potential for microevolutionary adaptation to changing CO2 conditions, with a selective advantage for bicA-containing strains in a high-CO2 world.
CO2 水平的升高可能是蓝藻 CO2 浓缩机制(CCM)的一个重要选择因素。我们研究了在全球许多湖泊中产生有害蓝藻水华的铜绿微囊藻的 CCM 中的遗传多样性。所有 20 株被调查的微囊藻都含有两种 CO2 摄取系统的完整基因,即依赖于 ATP 的碳酸氢盐摄取系统 BCT1 和几种碳酸酐酶(CA)。然而,有 12 株菌缺乏高流速碳酸氢盐转运蛋白 BicA 或高亲和力碳酸氢盐转运蛋白 SbtA。这两个基因 bicA 和 sbtA 都位于同一个操纵子上,该操纵子的表达很可能受到额外的 LysR 型转录调节因子(CcmR2)的调节。只有小 bicA 片段的菌株在 sbtAB 的系统发育树中聚集在一起,并且来自不同大陆的分离株的 bicA 片段相似。这表明,一个共同的祖先可能首先失去了其 bicA 基因的大部分,随后在世界各地传播。生长实验表明,具有 sbtA 的菌株在低无机碳(Ci)条件下表现更好,而具有 bicA 的菌株在高 Ci 条件下表现更好。这为之前的竞争实验提供了另一种解释,因为我们的结果表明,在低 CO2 水平下的竞争是由只有 sbtA 的专家赢得的,而具有 bicA 和 sbtA 的通才则在高 CO2 水平下赢得了竞争。因此,Ci 摄取系统的遗传和表型变异为微囊藻提供了适应不断变化的 CO2 条件的微进化潜力,具有 bicA 的菌株在高 CO2 世界中具有选择优势。