Suppr超能文献

无机碳摄取系统的遗传多样性导致蓝藻微囊藻对 CO2 的响应变化。

Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis.

机构信息

Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.

出版信息

ISME J. 2014 Mar;8(3):589-600. doi: 10.1038/ismej.2013.179. Epub 2013 Oct 17.

Abstract

Rising CO2 levels may act as an important selective factor on the CO2-concentrating mechanism (CCM) of cyanobacteria. We investigated genetic diversity in the CCM of Microcystis aeruginosa, a species producing harmful cyanobacterial blooms in many lakes worldwide. All 20 investigated Microcystis strains contained complete genes for two CO2 uptake systems, the ATP-dependent bicarbonate uptake system BCT1 and several carbonic anhydrases (CAs). However, 12 strains lacked either the high-flux bicarbonate transporter BicA or the high-affinity bicarbonate transporter SbtA. Both genes, bicA and sbtA, were located on the same operon, and the expression of this operon is most likely regulated by an additional LysR-type transcriptional regulator (CcmR2). Strains with only a small bicA fragment clustered together in the phylogenetic tree of sbtAB, and the bicA fragments were similar in strains isolated from different continents. This indicates that a common ancestor may first have lost most of its bicA gene and subsequently spread over the world. Growth experiments showed that strains with sbtA performed better at low inorganic carbon (Ci) conditions, whereas strains with bicA performed better at high Ci conditions. This offers an alternative explanation of previous competition experiments, as our results reveal that the competition at low CO2 levels was won by a specialist with only sbtA, whereas a generalist with both bicA and sbtA won at high CO2 levels. Hence, genetic and phenotypic variation in Ci uptake systems provide Microcystis with the potential for microevolutionary adaptation to changing CO2 conditions, with a selective advantage for bicA-containing strains in a high-CO2 world.

摘要

CO2 水平的升高可能是蓝藻 CO2 浓缩机制(CCM)的一个重要选择因素。我们研究了在全球许多湖泊中产生有害蓝藻水华的铜绿微囊藻的 CCM 中的遗传多样性。所有 20 株被调查的微囊藻都含有两种 CO2 摄取系统的完整基因,即依赖于 ATP 的碳酸氢盐摄取系统 BCT1 和几种碳酸酐酶(CA)。然而,有 12 株菌缺乏高流速碳酸氢盐转运蛋白 BicA 或高亲和力碳酸氢盐转运蛋白 SbtA。这两个基因 bicA 和 sbtA 都位于同一个操纵子上,该操纵子的表达很可能受到额外的 LysR 型转录调节因子(CcmR2)的调节。只有小 bicA 片段的菌株在 sbtAB 的系统发育树中聚集在一起,并且来自不同大陆的分离株的 bicA 片段相似。这表明,一个共同的祖先可能首先失去了其 bicA 基因的大部分,随后在世界各地传播。生长实验表明,具有 sbtA 的菌株在低无机碳(Ci)条件下表现更好,而具有 bicA 的菌株在高 Ci 条件下表现更好。这为之前的竞争实验提供了另一种解释,因为我们的结果表明,在低 CO2 水平下的竞争是由只有 sbtA 的专家赢得的,而具有 bicA 和 sbtA 的通才则在高 CO2 水平下赢得了竞争。因此,Ci 摄取系统的遗传和表型变异为微囊藻提供了适应不断变化的 CO2 条件的微进化潜力,具有 bicA 的菌株在高 CO2 世界中具有选择优势。

相似文献

3
Rapid adaptation of harmful cyanobacteria to rising CO2.
Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9315-20. doi: 10.1073/pnas.1602435113. Epub 2016 Aug 1.
4
Diel Variation in Gene Expression of the CO2-Concentrating Mechanism during a Harmful Cyanobacterial Bloom.
Front Microbiol. 2016 Apr 22;7:551. doi: 10.3389/fmicb.2016.00551. eCollection 2016.
5
Colonial morphology weakens the response of different inorganic carbon uptake systems to CO levels in Microcystis population.
Harmful Algae. 2023 Oct;128:102491. doi: 10.1016/j.hal.2023.102491. Epub 2023 Aug 19.
6
The occurrence of positive selection on BicA transporter of Microcystis aeruginosa.
Ecotoxicol Environ Saf. 2024 Sep 15;283:116795. doi: 10.1016/j.ecoenv.2024.116795. Epub 2024 Jul 30.
8
Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism.
Photosynth Res. 2011 Sep;109(1-3):47-57. doi: 10.1007/s11120-010-9608-y. Epub 2011 Feb 26.
9
Effects of elevated CO2 on dynamics of microcystin-producing and non-microcystin-producing strains during Microcystis blooms.
J Environ Sci (China). 2015 Jan 1;27:251-8. doi: 10.1016/j.jes.2014.05.047. Epub 2014 Nov 24.
10
Genomic Analysis of CZ1 Reveals Efficient Carbon Fixation Modules.
Plants (Basel). 2023 Sep 13;12(18):3251. doi: 10.3390/plants12183251.

引用本文的文献

2
Microcystin shapes the phycosphere through community filtering and by influencing cross-feeding interactions.
ISME Commun. 2024 Dec 24;5(1):ycae170. doi: 10.1093/ismeco/ycae170. eCollection 2025 Jan.
5
Impact of temperature on the temporal dynamics of microcystin in PCC7806.
Front Microbiol. 2023 Aug 31;14:1200816. doi: 10.3389/fmicb.2023.1200816. eCollection 2023.
6
Preference of carbon absorption determines the competitive ability of algae along atmospheric CO concentration.
Ecol Evol. 2022 Jul 11;12(7):e9079. doi: 10.1002/ece3.9079. eCollection 2022 Jul.
9
A comparative study of metatranscriptomic assessment methods to characterize Microcystis blooms.
Limnol Oceanogr Methods. 2021 Dec;19(12):846-854. doi: 10.1002/lom3.10465. Epub 2021 Nov 8.
10
Microbial Biofilms Along a Geochemical Gradient at the Shallow-Water Hydrothermal System of Vulcano Island, Mediterranean Sea.
Front Microbiol. 2022 Feb 23;13:840205. doi: 10.3389/fmicb.2022.840205. eCollection 2022.

本文引用的文献

1
The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea.
New Phytol. 1997 Jul;136(3):407-417. doi: 10.1046/j.1469-8137.1997.00754.x.
3
Modes of active inorganic carbon uptake in the cyanobacterium, Synechococcus sp. PCC7942.
Funct Plant Biol. 2002 Apr;29(3):131-149. doi: 10.1071/PP01229.
4
A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa.
PLoS One. 2013 Aug 12;8(8):e70747. doi: 10.1371/journal.pone.0070747. eCollection 2013.
5
Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions.
Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6448-52. doi: 10.1073/pnas.1216006110. Epub 2013 Apr 1.
7
Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles.
Philos Trans R Soc Lond B Biol Sci. 2012 Feb 19;367(1588):493-507. doi: 10.1098/rstb.2011.0212.
8
Membrane topology of the cyanobacterial bicarbonate transporter, SbtA, and identification of potential regulatory loops.
Mol Membr Biol. 2011 Aug;28(5):265-75. doi: 10.3109/09687688.2011.593049. Epub 2011 Jun 23.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验