Suppr超能文献

麻醉领域的响应面模型:速成课程。

Response surface models in the field of anesthesia: A crash course.

作者信息

Liou Jing-Yang, Tsou Mei-Yung, Ting Chien-Kun

机构信息

Department of Anesthesiology, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC.

Department of Anesthesiology, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC; National Yang-Ming University and School of Medicine, Taipei, Taiwan, ROC.

出版信息

Acta Anaesthesiol Taiwan. 2015 Dec;53(4):139-45. doi: 10.1016/j.aat.2015.06.005. Epub 2015 Aug 28.

Abstract

Drug interaction is fundamental in performing anesthesia. A response surface model (RSM) is a very useful tool for investigating drug interactions. The methodology appeared many decades ago, but did not receive attention in the field of anesthesia until the 1990s. Drug investigations typically start with pharmacokinetics, but it is the effects on the body clinical anesthesiologists really care about. Typically, drug interactions are divided into additive, synergistic, or infra-additive. Traditional isobolographic analysis or concentration-effect curve shifts are limited to a single endpoint. Response surface holds the complete package of isobolograms and concentration effect curves in one equation for a given endpoint, e.g., loss of response to laryngoscopy. As a pharmacodynamic tool, RSM helps anesthesiologists guide their drug therapy by navigating the surface. We reviewed the most commonly used models: (1) the Greco model; (2) Reduced Greco model; (3) Minto model; and (4) the Hierarchy models. Each one has its unique concept and strengths. These models served as groundwork for researchers to modify the formula to fit their drug of interest. RSM usually work with two drugs, but three-drug models can be constructed at the expense of greatly increasing the complexity. A wide range of clinical applications are made possible with the help of pharmacokinetic simulation. Pharmacokinetic-pharmcodynamic modeling using the RSMs gives anesthesiologists the versatility to work with precision and safe drug interactions. Currently, RSMs have been used for predicting patient responses, estimating wake up time, pinpointing the optimal drug concentration, guide therapy with respect to patient's well-being, and aid in procedures that require rapid patient arousal such as awake craniotomy or Stagnara wake-up test. There is no other model that is universally better than the others. Researches are encouraged to find the best fitting model for different occasions with an objective measure.

摘要

药物相互作用在麻醉实施过程中至关重要。响应面模型(RSM)是研究药物相互作用的一种非常有用的工具。该方法在几十年前就已出现,但直到20世纪90年代才在麻醉领域受到关注。药物研究通常从药代动力学开始,但临床麻醉医生真正关心的是药物对身体的影响。通常,药物相互作用分为相加、协同或次相加。传统的等效应线图分析或浓度-效应曲线移动仅限于单一终点。响应面在一个方程中为给定终点(例如对喉镜检查无反应)包含了完整的等效应线图和浓度-效应曲线组合。作为一种药效学工具,RSM通过在曲面上导航帮助麻醉医生指导药物治疗。我们回顾了最常用的模型:(1)格雷科模型;(2)简化格雷科模型;(3)明托模型;以及(4)层次模型。每个模型都有其独特的概念和优势。这些模型为研究人员修改公式以适应他们感兴趣的药物奠定了基础。RSM通常用于两种药物,但也可以构建三种药物的模型,代价是大大增加复杂性。在药代动力学模拟的帮助下,实现了广泛的临床应用。使用RSM的药代动力学-药效学建模使麻醉医生能够灵活地精确处理安全的药物相互作用。目前,RSM已用于预测患者反应、估计苏醒时间、确定最佳药物浓度、根据患者的健康状况指导治疗,以及辅助诸如清醒开颅手术或斯塔尼亚拉唤醒试验等需要患者快速苏醒的手术。没有一种模型普遍优于其他模型。鼓励研究人员通过客观测量找到最适合不同情况的模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验