Brahimi-Horn M Christiane, Giuliano Sandy, Saland Estelle, Lacas-Gervais Sandra, Sheiko Tatiana, Pelletier Joffrey, Bourget Isabelle, Bost Frédéric, Féral Chloé, Boulter Etienne, Tauc Michel, Ivan Mircea, Garmy-Susini Barbara, Popa Alexandra, Mari Bernard, Sarry Jean-Emmanuel, Craigen William J, Pouysségur Jacques, Mazure Nathalie M
Institute for Research on Cancer and Aging of Nice, CNRS-UMR 7284-Inserm U1081, University of Nice Sophia-Antipolis, Centre Antoine Lacassagne, 33 Ave de Valombrose, 06189 Nice, France.
Centre de Recherche en Cancérologie de Toulouse, INSERM-UPSIII U1037, Oncopole, Toulouse, 31037 Cedex 1 France.
Cancer Metab. 2015 Aug 26;3:8. doi: 10.1186/s40170-015-0133-5. eCollection 2015.
Mitochondria are more than just the powerhouse of cells; they dictate if a cell dies or survives. Mitochondria are dynamic organelles that constantly undergo fusion and fission in response to environmental conditions. We showed previously that mitochondria of cells in a low oxygen environment (hypoxia) hyperfuse to form enlarged or highly interconnected networks with enhanced metabolic efficacy and resistance to apoptosis. Modifications to the appearance and metabolic capacity of mitochondria have been reported in cancer. However, the precise mechanisms regulating mitochondrial dynamics and metabolism in cancer are unknown. Since hypoxia plays a role in the generation of these abnormal mitochondria, we questioned if it modulates mitochondrial function. The mitochondrial outer-membrane voltage-dependent anion channel 1 (VDAC1) is at center stage in regulating metabolism and apoptosis. We demonstrated previously that VDAC1 was post-translationally C-terminal cleaved not only in various hypoxic cancer cells but also in tumor tissues of patients with lung adenocarcinomas. Cells with enlarged mitochondria and cleaved VDAC1 were also more resistant to chemotherapy-stimulated cell death than normoxic cancer cells.
Transcriptome analysis of mouse embryonic fibroblasts (MEF) knocked out for Vdac1 highlighted alterations in not only cancer and inflammatory pathways but also in the activation of the hypoxia-inducible factor-1 (HIF-1) signaling pathway in normoxia. HIF-1α was stable in normoxia due to accumulation of reactive oxygen species (ROS), which decreased respiration and glycolysis and maintained basal apoptosis. However, in hypoxia, activation of extracellular signal-regulated kinase (ERK) in combination with maintenance of respiration and increased glycolysis counterbalanced the deleterious effects of enhanced ROS, thereby allowing Vdac1 (-/-) MEF to proliferate better than wild-type MEF in hypoxia. Allografts of RAS-transformed Vdac1 (-/-) MEF exhibited stabilization of both HIF-1α and HIF-2α, blood vessel destabilization, and a strong inflammatory response. Moreover, expression of Cdkn2a, a HIF-1-target and tumor suppressor gene, was markedly decreased. Consequently, RAS-transformed Vdac1 (-/-) MEF tumors grew faster than wild-type MEF tumors.
Metabolic reprogramming in cancer cells may be regulated by VDAC1 through vascular destabilization and inflammation. These findings provide new perspectives into the understanding of VDAC1 in the function of mitochondria not only in cancer but also in inflammatory diseases.
线粒体不仅仅是细胞的动力源;它们决定细胞的生死。线粒体是动态细胞器,会根据环境条件不断进行融合和裂变。我们之前表明,处于低氧环境(缺氧)中的细胞线粒体过度融合,形成扩大的或高度相互连接的网络,具有增强的代谢功效和抗凋亡能力。癌症中已报道线粒体的外观和代谢能力发生了改变。然而,癌症中线粒体动态变化和代谢的精确调控机制尚不清楚。由于缺氧在这些异常线粒体的产生中起作用,我们质疑它是否调节线粒体功能。线粒体外膜电压依赖性阴离子通道1(VDAC1)在调节代谢和凋亡中处于核心地位。我们之前证明,VDAC1不仅在各种缺氧癌细胞中,而且在肺腺癌患者的肿瘤组织中都发生了翻译后C末端切割。线粒体增大且VDAC1被切割的细胞也比常氧癌细胞对化疗诱导的细胞死亡更具抗性。
对敲除Vdac1的小鼠胚胎成纤维细胞(MEF)进行转录组分析,结果突出显示不仅癌症和炎症途径发生了改变,而且常氧下缺氧诱导因子-1(HIF-1)信号通路也被激活。由于活性氧(ROS)的积累,HIF-1α在常氧下稳定,这降低了呼吸作用和糖酵解,并维持基础凋亡。然而,在缺氧条件下,细胞外信号调节激酶(ERK)的激活与呼吸作用的维持以及糖酵解的增加相结合,抵消了ROS增加的有害影响,从而使Vdac1(-/-)MEF在缺氧条件下比野生型MEF增殖得更好。RAS转化的Vdac1(-/-)MEF的同种异体移植表现出HIF-1α和HIF-2α的稳定、血管不稳定以及强烈的炎症反应。此外,HIF-1靶标和肿瘤抑制基因Cdkn2a的表达明显降低。因此,RAS转化的Vdac1(-/-)MEF肿瘤比野生型MEF肿瘤生长得更快。
癌细胞中的代谢重编程可能由VDAC1通过血管不稳定和炎症来调节。这些发现为理解VDAC1在线粒体功能中的作用提供了新的视角,不仅在癌症中,而且在炎症性疾病中。