Suppr超能文献

光活性 TiO2 和氟掺杂对 SnO2 反蛋白石纳米结构用于太阳能水分解的联合效应。

Joint Effects of Photoactive TiO2 and Fluoride-Doping on SnO2 Inverse Opal Nanoarchitecture for Solar Water Splitting.

机构信息

Department of Chemistry Education, Chonnam National University , Gwangju 500-757, South Korea.

Department of Materials Science and Engineering and Optoelectronics Convergence Research Center, Chonnam National University , Gwangju 500-757, South Korea.

出版信息

ACS Appl Mater Interfaces. 2015 Sep 16;7(36):20292-303. doi: 10.1021/acsami.5b05914. Epub 2015 Sep 2.

Abstract

Inverse opal (IO) films of tin dioxide (SnO2) were fabricated on polystyrene (PS) beads (diameter=350 nm (±20 nm) with a spin coating method. To compensate for the large band gap (Eg=3.8 eV), a thin TiO2 shell was deposited on the SnO2-IO films with atomic layer deposition (ALD), which produced shells with thicknesses of 10-40 nm. The morphological changes and crystalline properties of the SnO2 and TiO2-coated SnO2 (herein after referred to as TiO2/SnO2) IO films were investigated with field-emission scanning electron microscopy and X-ray diffraction, respectively. The photoelectrochemical (PEC) behavior of the samples was tested in a 0.1 M KOH solution under 1 sun illumination (100 mW/cm2 with an AM 1.5 filter). The highest PEC performance was obtained with the TiO2(10 nm)/SnO2 IO films, which produced a photocurrent density (Jsc) of 4.67 mA/cm2 at 0.5 V (vs NHE) and was sequentially followed by the TiO2(20 nm)/SnO2-IO, TiO2(30 nm)/SnO2-IO, TiO2 (40 nm)/SnO2-IO and SnO2 IO films. Overall, the thin TiO2 shell covered on the SnO2-IO core enhanced Jsc by 3 orders of magnitude, which in turn the PEC activity. This is mainly ascribed to the extremely low charge-transfer resistance (Rct) in the photoelectrode/electrolyte and at the TiO2/SnO2 interface, as well as the contribution of the photoactive TiO2 layer, which has an Eg of 3.2 eV. Moreover, to improve the electrical conductivity of the core SnO2 IO film, the films were doped with 10 mol % of F. The F- doped films were labeled as the FTO IO film. The Rct of the FTO-IO films decreased because of the improved electronic conductivity, enhancing the PEC performance of the TiO2(10 nm)/FTO-IO films by approximately 20%. The core-shell nanowire mesh nanoarchitecture is therefore suggested to provide an insight for designing the peculiar structure based on the material's properties and the engineering of their band gap energy for highly efficient PEC performance.

摘要

采用旋涂法在聚苯乙烯(PS)珠(直径=350nm(±20nm)上制备了氧化锡(SnO2)的反蛋白石(IO)薄膜。为了弥补较大的带隙(Eg=3.8eV),采用原子层沉积(ALD)在 SnO2-IO 薄膜上沉积了一层薄的 TiO2 壳,其厚度为 10-40nm。通过场发射扫描电子显微镜和 X 射线衍射分别研究了 SnO2 和涂覆 TiO2(SnO2(此处简称 TiO2/SnO2)的 IO 薄膜的形貌变化和晶体性质。在 1 太阳光照(AM 1.5 滤光片下 100mW/cm2)下,在 0.1M KOH 溶液中测试了样品的光电化学(PEC)性能。具有最高 PEC 性能的是 TiO2(10nm)/SnO2 IO 薄膜,其在 0.5V(相对于 NHE)时产生 4.67mA/cm2 的光电流密度(Jsc),其次是 TiO2(20nm)/SnO2-IO、TiO2(30nm)/SnO2-IO、TiO2(40nm)/SnO2-IO 和 SnO2 IO 薄膜。总体而言,涂覆在 SnO2-IO 核上的薄 TiO2 壳将 Jsc 提高了 3 个数量级,从而提高了 PEC 活性。这主要归因于光电电极/电解质和 TiO2/SnO2 界面处极低的电荷转移电阻(Rct),以及具有 3.2eV 带隙的光活性 TiO2 层的贡献。此外,为了提高核 SnO2 IO 薄膜的电导率,将薄膜掺杂了 10mol%的 F。掺杂 F 的薄膜标记为 FTO IO 薄膜。由于电子电导率的提高,FTO-IO 薄膜的 Rct 降低,TiO2(10nm)/FTO-IO 薄膜的 PEC 性能提高了约 20%。因此,核壳纳米线网纳米结构为根据材料性质设计特殊结构和工程化其带隙能量以实现高效 PEC 性能提供了思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验