Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland.
Department of Physics, Accelerator Laboratory, University of Jyväskylä , FI-40014 Jyväskylä, Finland.
ACS Nano. 2015 Dec 22;9(12):11775-83. doi: 10.1021/acsnano.5b03694. Epub 2015 Nov 16.
We developed a low-temperature atomic layer deposition route to deposit phase pure and crystalline hematite (α-Fe2O3) films at 230 °C without the need for postannealing. Homogenous and conformal deposition with good aspect ratio coverage was demonstrated on a nanostructured substrate and analyzed by transmission electron microscopy. These as-deposited α-Fe2O3 films were investigated as photoanodes for photoelectrochemical water oxidation and found to be highly photoactive. Combined with a TiO2 underlayer and a low-cost Ni(OH)2 catalyst, hematite films of less than 10 nm in thickness reached photocurrent densities of 0.3 mA cm(-2) at 1.23 V vs RHE and a photocurrent onset potential of less than 0.9 V vs RHE, previously unseen for films this thin and without high temperature annealing. In a thickness-dependent photoelectrochemical analysis, we identified a hematite thickness of only 10 nm to yield the highest internal quantum efficiency when using a suitable underlayer such as TiO2 that induces doping of the hematite film and reduces electron/hole recombination at the back contact. We find that, at high bias potentials, photocurrent density and quantum efficiency proportionally increase with light absorption in films thinner than 10 nm and are limited by the space charge layer width in thicker films. Thus, we propose to apply hematite films of 10 nm in thickness for future developments on suitable nanostructured conductive scaffolds that can now be extended to organic scaffolds due to our low-temperature process.
我们开发了一种低温原子层沉积方法,能够在 230°C 下沉积单相且结晶的赤铁矿(α-Fe2O3)薄膜,而无需进行退火处理。在纳米结构基底上进行了均匀和保形的沉积,具有良好的高宽比覆盖度,并通过透射电子显微镜进行了分析。这些沉积的α-Fe2O3 薄膜被用作光电化学水氧化的光阳极,被发现具有很高的光电活性。结合 TiO2 底层和低成本的 Ni(OH)2 催化剂,厚度小于 10nm 的赤铁矿薄膜在 1.23V vs RHE 时达到了 0.3mA cm-2 的光电流密度,在 0.9V vs RHE 以下的光电流起始电位,这在没有高温退火的情况下,是以前从未见过的。在厚度相关的光电化学分析中,我们发现仅 10nm 厚的赤铁矿就能获得最高的内部量子效率,当使用 TiO2 等合适的底层时,它会诱导赤铁矿薄膜掺杂,并减少背接触处的电子/空穴复合。我们发现,在高偏压下,光电流密度和量子效率与薄膜中小于 10nm 的光吸收成正比增加,并在更厚的薄膜中受到空间电荷层宽度的限制。因此,我们建议将 10nm 厚的赤铁矿薄膜应用于未来的合适纳米结构导电支架的开发,由于我们的低温工艺,现在可以将其扩展到有机支架。