Yazdani A, Dunson D B
Human Genetic Center, University of Texas at Houston Health Science Center, Houston, USA and.
Department of Statistical Science, Duke University, Durham, North Carolina USA.
Bioinformatics. 2015 Dec 15;31(24):3890-6. doi: 10.1093/bioinformatics/btv496. Epub 2015 Aug 30.
Both single marker and simultaneous analysis face challenges in GWAS due to the large number of markers genotyped for a small number of subjects. This large p small n problem is particularly challenging when the trait under investigation has low heritability.
In this article, we propose a two-stage approach that is a hybrid method of single and simultaneous analysis designed to improve genomic prediction of complex traits. In the first stage, we use a Bayesian independent screening method to select the most promising SNPs. In the second stage, we rely on a hierarchical model to analyze the joint impact of the selected markers. The model is designed to take into account familial dependence in the different subjects, while using local-global shrinkage priors on the marker effects.
We evaluate the performance in simulation studies, and consider an application to animal breeding data. The illustrative data analysis reveals an encouraging result in terms of prediction performance and computational cost.
由于在全基因组关联研究(GWAS)中,针对少量受试者进行了大量标记的基因分型,单标记分析和同时分析都面临挑战。当所研究的性状遗传力较低时,这种大p小n问题尤其具有挑战性。
在本文中,我们提出了一种两阶段方法,这是一种单分析和同时分析的混合方法,旨在改进复杂性状的基因组预测。在第一阶段,我们使用贝叶斯独立筛选方法来选择最有前景的单核苷酸多态性(SNP)。在第二阶段,我们依靠分层模型来分析所选标记的联合影响。该模型旨在考虑不同受试者之间的家族依赖性,同时对标记效应使用局部-全局收缩先验。
我们在模拟研究中评估了性能,并考虑将其应用于动物育种数据。说明性数据分析在预测性能和计算成本方面显示出令人鼓舞的结果。