Suppr超能文献

贝叶斯全局关联研究:用于全基因组关联研究的具有非局部先验的线性混合模型中的贝叶斯变量选择。

BGWAS: Bayesian variable selection in linear mixed models with nonlocal priors for genome-wide association studies.

机构信息

Department of Statistics, Virginia Tech, Blacksburg, 24061, USA.

出版信息

BMC Bioinformatics. 2023 May 11;24(1):194. doi: 10.1186/s12859-023-05316-x.

Abstract

BACKGROUND

Genome-wide association studies (GWAS) seek to identify single nucleotide polymorphisms (SNPs) that cause observed phenotypes. However, with highly correlated SNPs, correlated observations, and the number of SNPs being two orders of magnitude larger than the number of observations, GWAS procedures often suffer from high false positive rates.

RESULTS

We propose BGWAS, a novel Bayesian variable selection method based on nonlocal priors for linear mixed models specifically tailored for genome-wide association studies. Our proposed method BGWAS uses a novel nonlocal prior for linear mixed models (LMMs). BGWAS has two steps: screening and model selection. The screening step scans through all the SNPs fitting one LMM for each SNP and then uses Bayesian false discovery control to select a set of candidate SNPs. After that, a model selection step searches through the space of LMMs that may have any number of SNPs from the candidate set. A simulation study shows that, when compared to popular GWAS procedures, BGWAS greatly reduces false positives while maintaining the same ability to detect true positive SNPs. We show the utility and flexibility of BGWAS with two case studies: a case study on salt stress in plants, and a case study on alcohol use disorder.

CONCLUSIONS

BGWAS maintains and in some cases increases the recall of true SNPs while drastically lowering the number of false positives compared to popular SMA procedures.

摘要

背景

全基因组关联研究(GWAS)旨在识别导致观察到的表型的单核苷酸多态性(SNP)。然而,由于高度相关的 SNP、相关观察以及 SNP 的数量是观察数量的两个数量级,GWAS 程序通常会遭受高假阳性率的困扰。

结果

我们提出了 BGWAS,这是一种针对线性混合模型的新的基于非局部先验的贝叶斯变量选择方法,专门针对全基因组关联研究。我们提出的方法 BGWAS 使用了一种新的线性混合模型(LMM)的非局部先验。BGWAS 有两个步骤:筛选和模型选择。筛选步骤为每个 SNP 拟合一个 LMM,然后使用贝叶斯错误发现控制来选择一组候选 SNP。之后,模型选择步骤在候选集的 LMM 空间中搜索,其中可能有任意数量的 SNP。一项模拟研究表明,与流行的 GWAS 程序相比,BGWAS 在保持检测真正 SNP 的能力的同时,大大降低了假阳性率。我们通过两个案例研究展示了 BGWAS 的实用性和灵活性:一个是植物盐胁迫的案例研究,另一个是酒精使用障碍的案例研究。

结论

与流行的 SMA 程序相比,BGWAS 在保持和在某些情况下增加真正 SNP 的召回率的同时,大大降低了假阳性的数量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/813f/10176706/4be1eec2af54/12859_2023_5316_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验