Suppr超能文献

具有基因水平依赖性的贝叶斯全基因组和表观基因组关联研究。

Bayesian genome- and epigenome-wide association studies with gene level dependence.

作者信息

Lock Eric F, Dunson David B

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.

Department of Statistical Science, Duke University, Durham, North Carolina 27708, U.S.A.

出版信息

Biometrics. 2017 Sep;73(3):1018-1028. doi: 10.1111/biom.12649. Epub 2017 Jan 12.

Abstract

High-throughput genetic and epigenetic data are often screened for associations with an observed phenotype. For example, one may wish to test hundreds of thousands of genetic variants, or DNA methylation sites, for an association with disease status. These genomic variables can naturally be grouped by the gene they encode, among other criteria. However, standard practice in such applications is independent screening with a universal correction for multiplicity. We propose a Bayesian approach in which the prior probability of an association for a given genomic variable depends on its gene, and the gene-specific probabilities are modeled nonparametrically. This hierarchical model allows for appropriate gene and genome-wide multiplicity adjustments, and can be incorporated into a variety of Bayesian association screening methodologies with negligible increase in computational complexity. We describe an application to screening for differences in DNA methylation between lower grade glioma and glioblastoma multiforme tumor samples from The Cancer Genome Atlas. Software is available via the package BayesianScreening for R: github.com/lockEF/BayesianScreening.

摘要

高通量遗传和表观遗传数据经常被筛选以寻找与观察到的表型之间的关联。例如,人们可能希望测试数十万种遗传变异或DNA甲基化位点与疾病状态的关联。这些基因组变量自然可以根据它们所编码的基因以及其他标准进行分组。然而,此类应用中的标准做法是采用通用的多重性校正进行独立筛选。我们提出一种贝叶斯方法,其中给定基因组变量关联的先验概率取决于其所在的基因,并且基因特异性概率采用非参数建模。这种层次模型允许进行适当的基因和全基因组多重性调整,并且可以纳入各种贝叶斯关联筛选方法中,而计算复杂度的增加可以忽略不计。我们描述了一个应用,用于筛选来自癌症基因组图谱的低级别胶质瘤和多形性胶质母细胞瘤肿瘤样本之间DNA甲基化的差异。可通过R包BayesianScreening获取软件:github.com/lockEF/BayesianScreening 。

相似文献

10
Genome-wide DNA methylation analysis in alcohol dependence.酒精依赖症的全基因组 DNA 甲基化分析。
Addict Biol. 2013 Mar;18(2):392-403. doi: 10.1111/adb.12037. Epub 2013 Feb 7.

本文引用的文献

1
Shared kernel Bayesian screening.共享核贝叶斯筛选
Biometrika. 2015 Dec;102(4):829-842. doi: 10.1093/biomet/asv032. Epub 2015 Jul 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验