Boulton Chris A, Lenton Timothy M
Earth System Science, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QE, United Kingdom
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11496-501. doi: 10.1073/pnas.1501781112. Epub 2015 Aug 31.
Marine ecosystems are sensitive to stochastic environmental variability, with higher-amplitude, lower-frequency--i.e., "redder"--variability posing a greater threat of triggering large ecosystem changes. Here we show that fluctuations in the Pacific Decadal Oscillation (PDO) index have slowed down markedly over the observational record (1900-present), as indicated by a robust increase in autocorrelation. This "reddening" of the spectrum of climate variability is also found in regionally averaged North Pacific sea surface temperatures (SSTs), and can be at least partly explained by observed deepening of the ocean mixed layer. The progressive reddening of North Pacific climate variability has important implications for marine ecosystems. Ecosystem variables that respond linearly to climate forcing will have become prone to much larger variations over the observational record, whereas ecosystem variables that respond nonlinearly to climate forcing will have become prone to more frequent "regime shifts." Thus, slowing down of North Pacific climate variability can help explain the large magnitude and potentially the quick succession of well-known abrupt changes in North Pacific ecosystems in 1977 and 1989. When looking ahead, despite model limitations in simulating mixed layer depth (MLD) in the North Pacific, global warming is robustly expected to decrease MLD. This could potentially reverse the observed trend of slowing down of North Pacific climate variability and its effects on marine ecosystems.
海洋生态系统对随机环境变化很敏感,振幅较高、频率较低(即“更红”)的变化对引发大型生态系统变化构成更大威胁。我们在此表明,太平洋年代际振荡(PDO)指数的波动在观测记录期(1900年至今)内已显著放缓,自相关的显著增加表明了这一点。这种气候变率谱的“变红”在北太平洋区域平均海表温度(SST)中也有发现,并且至少可以部分地由观测到的海洋混合层加深来解释。北太平洋气候变率的逐渐变红对海洋生态系统具有重要意义。对气候强迫呈线性响应的生态系统变量在观测记录期内会更容易出现大得多的变化,而对气候强迫呈非线性响应的生态系统变量则会更容易出现更频繁的“状态转变”。因此,北太平洋气候变率的放缓有助于解释1977年和1989年北太平洋生态系统中著名的突变在幅度上的巨大以及可能的快速相继发生。展望未来,尽管在模拟北太平洋混合层深度(MLD)方面模型存在局限性,但全球变暖强烈预计会使混合层深度降低。这可能会逆转观测到的北太平洋气候变率放缓趋势及其对海洋生态系统的影响。