Suppr超能文献

具有非高斯α稳定噪声的系统中临界点的早期预警信号。

Early warning signs for tipping points in systems with non-Gaussian α-stable noise.

作者信息

Layritz Lucia S, Rammig Anja, Pavlyukevich Ilya, Kuehn Christian

机构信息

School of Life Science, Technical University of Munich, Hans-Carl-v.-Carlowitz-Platz 2, Munich, 85354, Germany.

Institute of Mathematics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, Jena, 07743, Germany.

出版信息

Sci Rep. 2025 Apr 21;15(1):13758. doi: 10.1038/s41598-025-88659-0.

Abstract

Forecasting rapid, non-linear change or so-called tipping points is a major concern in ecology and environmental science. Statistical early warning signs, based on the theory of stochastic dynamical systems, are now regularly applied to observational data streams. However, the reliability of these early warning signs relies on a number of key mathematical assumptions, most notably the presence of Gaussian noise, while many ecological systems exhibit non-Gaussianity. We here show that for systems driven by non-Gaussian, α-stable noise, the classical early warning signs of rising variance and autocorrelation are not supported by mathematical theory, and their use poses the danger of spurious, false-positive results. To address this, we provide a generalized approach by introducing the scaling factor [Formula: see text] as an alternative early warning sign. We show that in the case of the linear Ornstein-Uhlenbeck process, there exists a direct inverse relationship between [Formula: see text] and the bifurcation parameter, telling us that [Formula: see text] will increase as we approach the bifurcation. Our numerical simulations confirm theoretical results and show that our findings generalize well to non-linear, non-equilibrium systems often employed in ecological systems. We thus provide a generalized, robust, and broadly applicable statistical early warning sign for systems driven by Gaussian and non-Gaussian α-stable noise.

摘要

预测快速的、非线性变化或所谓的临界点是生态学和环境科学中的一个主要关注点。基于随机动力系统理论的统计预警信号现在经常应用于观测数据流。然而,这些预警信号的可靠性依赖于一些关键的数学假设,最显著的是高斯噪声的存在,而许多生态系统表现出非高斯性。我们在此表明,对于由非高斯α稳定噪声驱动的系统,方差上升和自相关的经典预警信号在数学理论上并不成立,使用它们存在产生虚假、假阳性结果的风险。为了解决这个问题,我们通过引入缩放因子[公式:见原文]作为替代的预警信号提供了一种广义方法。我们表明,在线性奥恩斯坦 - 乌伦贝克过程的情况下,[公式:见原文]与分岔参数之间存在直接的反比关系,这告诉我们当接近分岔时[公式:见原文]会增加。我们的数值模拟证实了理论结果,并表明我们的发现能够很好地推广到生态系统中经常使用的非线性、非平衡系统。因此,我们为高斯和非高斯α稳定噪声驱动的系统提供了一个广义的、稳健的且广泛适用的统计预警信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c18d/12012112/ccc203c95251/41598_2025_88659_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验