Suppr超能文献

多系统萎缩朊病毒在两种不同的 Tg(SNCA*A53T)小鼠品系中连续传播后仍保持株型特异性。

Multiple system atrophy prions retain strain specificity after serial propagation in two different Tg(SNCA*A53T) mouse lines.

机构信息

Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.

Department of Neurology, University of California, San Francisco, CA, USA.

出版信息

Acta Neuropathol. 2019 Mar;137(3):437-454. doi: 10.1007/s00401-019-01959-4. Epub 2019 Jan 28.

Abstract

Previously, we reported that intracranial inoculation of brain homogenate from multiple system atrophy (MSA) patient samples produces neurological disease in the transgenic (Tg) mouse model TgM83, which uses the prion protein promoter to express human α-synuclein harboring the A53T mutation found in familial Parkinson's disease (PD). In our studies, we inoculated MSA and control patient samples into Tg mice constructed using a P1 artificial chromosome to express wild-type (WT), A30P, and A53T human α-synuclein on a mouse α-synuclein knockout background [Tg(SNCA)Nbm, Tg(SNCAA30P)Nbm, and Tg(SNCAA53T)Nbm]. In contrast to studies using TgM83 mice, motor deficits were not observed by 330-400 days in any of the Tg(SNCA)Nbm mice after inoculation with MSA brain homogenates. However, using a cell-based bioassay to measure α-synuclein prions, we found brain homogenates from Tg(SNCAA53T)Nbm mice inoculated with MSA patient samples contained α-synuclein prions, whereas control mice did not. Moreover, these α-synuclein aggregates retained the biological and biochemical characteristics of the α-synuclein prions in MSA patient samples. Intriguingly, Tg(SNCAA53T)Nbm mice developed α-synuclein pathology in neurons and astrocytes throughout the limbic system. This finding is in contrast to MSA-inoculated TgM83 mice, which develop exclusively neuronal α-synuclein aggregates in the hindbrain that cause motor deficits with advanced disease. In a crossover experiment, we inoculated TgM83 mice with brain homogenate from two MSA patient samples or one control sample first inoculated, or passaged, in Tg(SNCAA53T)Nbm animals. Additionally, we performed the reverse experiment by inoculating Tg(SNCAA53T)Nbm mice with brain homogenate from the same two MSA samples and one control sample first passaged in TgM83 animals. The TgM83 mice inoculated with mouse-passaged MSA developed motor dysfunction and α-synuclein prions, whereas the mouse-passaged control sample had no effect. Similarly, the mouse-passaged MSA samples induced α-synuclein prion formation in Tg(SNCA*A53T)Nbm mice, but the mouse-passaged control sample did not. The confirmed transmission of α-synuclein prions to a second synucleinopathy model and the ability to propagate prions between two distinct mouse lines while retaining strain-specific properties provides compelling evidence that MSA is a prion disease.

摘要

先前,我们曾报道过,将多系统萎缩症(MSA)患者样本的脑匀浆颅内接种到转基因(Tg)小鼠模型 TgM83 中,会导致该模型出现神经疾病,该模型使用朊病毒蛋白启动子表达携带有家族性帕金森病(PD)中发现的 A53T 突变的人α-突触核蛋白。在我们的研究中,我们使用 P1 人工染色体构建的 Tg 小鼠(Tg(SNCA)Nbm、Tg(SNCAA30P)Nbm 和 Tg(SNCAA53T)Nbm)接种了 MSA 和对照患者样本,这些小鼠表达野生型(WT)、A30P 和 A53T 人α-突触核蛋白,而背景为小鼠α-突触核蛋白敲除。与使用 TgM83 小鼠的研究不同,接种 MSA 脑匀浆后,任何 Tg(SNCA)Nbm 小鼠在 330-400 天都没有出现运动功能障碍。然而,我们使用细胞生物测定法来测量α-突触核蛋白朊病毒,发现接种 MSA 患者样本的 Tg(SNCAA53T)Nbm 小鼠的脑匀浆中含有α-突触核蛋白朊病毒,而对照小鼠则没有。此外,这些α-突触核蛋白聚集体保留了 MSA 患者样本中α-突触核蛋白朊病毒的生物学和生化特征。有趣的是,Tg(SNCAA53T)Nbm 小鼠在边缘系统的神经元和星形胶质细胞中发展出α-突触核蛋白病理学。这一发现与 MSA 接种的 TgM83 小鼠形成对比,后者仅在小脑后发展出神经元α-突触核蛋白聚集体,导致运动功能障碍,并随着疾病的发展而加重。在交叉实验中,我们首先用来自两个 MSA 患者样本或一个对照样本的脑匀浆接种 TgM83 小鼠,然后再接种 Tg(SNCAA53T)Nbm 动物。此外,我们用同样来自两个 MSA 样本和一个对照样本的脑匀浆接种 Tg(SNCAA53T)Nbm 动物,进行了反向实验。用小鼠传代的 MSA 接种的 TgM83 小鼠出现运动功能障碍和α-突触核蛋白朊病毒,而用小鼠传代的对照样本则没有影响。同样,用小鼠传代的 MSA 样本在 Tg(SNCA*A53T)Nbm 小鼠中诱导了α-突触核蛋白朊病毒的形成,但小鼠传代的对照样本则没有。α-突触核蛋白朊病毒向第二个突触核蛋白病模型的确认传播,以及在保留菌株特异性特性的情况下,在两种不同的小鼠系之间传播朊病毒的能力,提供了令人信服的证据,证明 MSA 是一种朊病毒病。

相似文献

1
Multiple system atrophy prions retain strain specificity after serial propagation in two different Tg(SNCA*A53T) mouse lines.
Acta Neuropathol. 2019 Mar;137(3):437-454. doi: 10.1007/s00401-019-01959-4. Epub 2019 Jan 28.
2
Multiple system atrophy prions transmit neurological disease to mice expressing wild-type human α-synuclein.
Acta Neuropathol. 2022 Oct;144(4):677-690. doi: 10.1007/s00401-022-02476-7. Epub 2022 Aug 26.
3
Transmission of multiple system atrophy prions to transgenic mice.
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19555-60. doi: 10.1073/pnas.1318268110. Epub 2013 Nov 11.
4
Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5308-17. doi: 10.1073/pnas.1514475112. Epub 2015 Aug 31.
5
MSA prions exhibit remarkable stability and resistance to inactivation.
Acta Neuropathol. 2018 Jan;135(1):49-63. doi: 10.1007/s00401-017-1762-2. Epub 2017 Aug 28.
6
Kinetics of α-synuclein prions preceding neuropathological inclusions in multiple system atrophy.
PLoS Pathog. 2020 Feb 4;16(2):e1008222. doi: 10.1371/journal.ppat.1008222. eCollection 2020 Feb.
9
Is Multiple System Atrophy a Prion-like Disorder?
Int J Mol Sci. 2021 Sep 18;22(18):10093. doi: 10.3390/ijms221810093.
10
Familial Parkinson's point mutation abolishes multiple system atrophy prion replication.
Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):409-414. doi: 10.1073/pnas.1719369115. Epub 2017 Dec 26.

引用本文的文献

2
Limitations and Applications of Rodent Models in Tauopathy and Synucleinopathy Research.
J Neurochem. 2025 Mar;169(3):e70021. doi: 10.1111/jnc.70021.
3
A-synuclein prion strains differentially adapt after passage in mice.
PLoS Pathog. 2024 Dec 6;20(12):e1012746. doi: 10.1371/journal.ppat.1012746. eCollection 2024 Dec.
5
Lipids and α-Synuclein: adding further variables to the equation.
Front Mol Biosci. 2024 Aug 12;11:1455817. doi: 10.3389/fmolb.2024.1455817. eCollection 2024.
6
Associations of amyloid-β oligomers and plaques with neuropathology in the mouse.
Brain Commun. 2024 Jun 25;6(4):fcae218. doi: 10.1093/braincomms/fcae218. eCollection 2024.
8
Effect of host and strain factors on α-synuclein prion pathogenesis.
Trends Neurosci. 2024 Jul;47(7):538-550. doi: 10.1016/j.tins.2024.05.004. Epub 2024 May 27.

本文引用的文献

2
Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel.
Nat Commun. 2018 Sep 6;9(1):3609. doi: 10.1038/s41467-018-05971-2.
3
Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy.
Cell Res. 2018 Sep;28(9):897-903. doi: 10.1038/s41422-018-0075-x. Epub 2018 Jul 31.
4
Cryo-EM structure of alpha-synuclein fibrils.
Elife. 2018 Jul 3;7:e36402. doi: 10.7554/eLife.36402.
5
Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies.
Nature. 2018 May;557(7706):558-563. doi: 10.1038/s41586-018-0104-4. Epub 2018 May 9.
6
Pathological Endogenous α-Synuclein Accumulation in Oligodendrocyte Precursor Cells Potentially Induces Inclusions in Multiple System Atrophy.
Stem Cell Reports. 2018 Feb 13;10(2):356-365. doi: 10.1016/j.stemcr.2017.12.001. Epub 2018 Jan 11.
7
Familial Parkinson's point mutation abolishes multiple system atrophy prion replication.
Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):409-414. doi: 10.1073/pnas.1719369115. Epub 2017 Dec 26.
8
MSA prions exhibit remarkable stability and resistance to inactivation.
Acta Neuropathol. 2018 Jan;135(1):49-63. doi: 10.1007/s00401-017-1762-2. Epub 2017 Aug 28.
10
Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5308-17. doi: 10.1073/pnas.1514475112. Epub 2015 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验