Suppr超能文献

通过在学习过程中解码记忆处理状态来预测重叠记忆的整合。

Predicting the integration of overlapping memories by decoding mnemonic processing states during learning.

作者信息

Richter Franziska R, Chanales Avi J H, Kuhl Brice A

机构信息

Department of Psychology, New York University, United States.

Department of Psychology, New York University, United States.

出版信息

Neuroimage. 2016 Jan 1;124(Pt A):323-335. doi: 10.1016/j.neuroimage.2015.08.051. Epub 2015 Aug 29.

Abstract

The hippocampal memory system is thought to alternate between two opposing processing states: encoding and retrieval. When present experience overlaps with past experience, this creates a potential tradeoff between encoding the present and retrieving the past. This tradeoff may be resolved by memory integration-that is, by forming a mnemonic representation that links present experience with overlapping past experience. Here, we used fMRI decoding analyses to predict when - and establish how - past and present experiences become integrated in memory. In an initial experiment, we alternately instructed subjects to adopt encoding, retrieval or integration states during overlapping learning. We then trained across-subject pattern classifiers to 'read out' the instructed processing states from fMRI activity patterns. We show that an integration state was clearly dissociable from encoding or retrieval states. Moreover, trial-by-trial fluctuations in decoded evidence for an integration state during learning reliably predicted behavioral expressions of successful memory integration. Strikingly, the decoding algorithm also successfully predicted specific instances of spontaneous memory integration in an entirely independent sample of subjects for whom processing state instructions were not administered. Finally, we show that medial prefrontal cortex and hippocampus differentially contribute to encoding, retrieval, and integration states: whereas hippocampus signals the tradeoff between encoding vs. retrieval states, medial prefrontal cortex actively represents past experience in relation to new learning.

摘要

海马体记忆系统被认为在两种相反的处理状态之间交替

编码和检索。当当前经验与过去经验重叠时,这就会在编码当前信息和检索过去信息之间产生一种潜在的权衡。这种权衡可能通过记忆整合来解决——也就是说,通过形成一种将当前经验与重叠的过去经验联系起来的记忆表征。在这里,我们使用功能磁共振成像(fMRI)解码分析来预测过去和当前经验何时以及如何在记忆中整合。在最初的实验中,我们在重叠学习期间交替指示受试者采用编码、检索或整合状态。然后,我们训练跨受试者模式分类器,以便从功能磁共振成像活动模式中“读出”指示的处理状态。我们表明,整合状态与编码或检索状态明显可区分。此外,学习过程中整合状态解码证据的逐次试验波动可靠地预测了成功记忆整合的行为表现。引人注目的是,解码算法还成功预测了在一个完全独立的未给予处理状态指示的受试者样本中的自发记忆整合的具体实例。最后,我们表明内侧前额叶皮层和海马体对编码、检索和整合状态有不同的贡献:海马体表明编码与检索状态之间的权衡,而内侧前额叶皮层则积极地呈现与新学习相关的过去经验。

相似文献

9
Insight reconfigures hippocampal-prefrontal memories.洞察力重塑海马-前额叶记忆。
Curr Biol. 2015 Mar 30;25(7):821-30. doi: 10.1016/j.cub.2015.01.033. Epub 2015 Feb 26.

引用本文的文献

1
Successful Prediction Is Associated With Enhanced Encoding.成功的预测与增强的编码相关。
Open Mind (Camb). 2025 Jul 26;9:959-991. doi: 10.1162/opmi.a.15. eCollection 2025.
6
Memory updating and the structure of event representations.记忆更新与事件表征的结构
Trends Cogn Sci. 2025 Apr;29(4):380-392. doi: 10.1016/j.tics.2024.11.008. Epub 2024 Dec 11.
7
The effects of episodic context on memory integration.情景背景对记忆整合的影响。
Sci Rep. 2024 Dec 4;14(1):30159. doi: 10.1038/s41598-024-82004-7.

本文引用的文献

3
Memory reactivation during rest supports upcoming learning of related content.休息期间的记忆再激活有助于后续对相关内容的学习。
Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15845-50. doi: 10.1073/pnas.1404396111. Epub 2014 Oct 20.
7
CA1 subfield contributions to memory integration and inference.CA1子区域对记忆整合与推理的贡献。
Hippocampus. 2014 Oct;24(10):1248-60. doi: 10.1002/hipo.22310. Epub 2014 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验