Suppr超能文献

高通量成像和基因表达方法揭示表面功能对银纳米粒子与细胞相互作用的影响。

High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles.

机构信息

MoSAIC/Biomedical MRI Unit, Department of Medicine, Catholic University of Leuven , Herestraat 49, B3000 Leuven, Belgium.

Physics and Biology Department, Philipps University of Marburg , Renthof 7, D35032 Marburg, Germany.

出版信息

ACS Nano. 2015 Oct 27;9(10):10431-44. doi: 10.1021/acsnano.5b04661. Epub 2015 Sep 3.

Abstract

The toxic effects of Ag nanoparticles (NPs) remain an issue of debate, where the respective contribution of the NPs themselves and of free Ag(+) ions present in the NP stock suspensions and after intracellular NP corrosion are not fully understood. Here, we employ a recently set up methodology based on high-content (HC) imaging combined with high-content gene expression studies to examine the interaction of three types of Ag NPs with identical core sizes, but coated with either mercaptoundecanoic acid (MUA), dodecylamine-modified poly(isobutylene-alt-maleic anhydride) (PMA), or poly(ethylene glycol) (PEG)-conjugated PMA with two types of cultured cells (primary human umbilical vein endothelial cells (HUVEC) and murine C17.2 neural progenitor cells). As a control, cells were also exposed to free Ag(+) ions at the same concentration as present in the respective Ag NP stock suspensions. The data reveal clear effects of the NP surface properties on cellular interactions. PEGylation of the NPs significantly reduces their cellular uptake efficiency, whereas MUA-NPs are more prone to agglomeration in complex tissue culture media. PEG-NPs display the lowest levels of toxicity, which is in line with their reduced cell uptake. MUA-NPs display the highest levels of toxicity, caused by autophagy, cell membrane damage, mitochondrial damage, and cytoskeletal deformations. At similar intracellular NP levels, PEG-NPs induce the highest levels of reactive oxygen species (ROS), but do not affect the cell cytoskeleton, in contrast to MUA- and PMA-NPs. Gene expression studies support the findings above, defining autophagy and cell membrane damage-related necrosis as main toxicity pathways. Additionally, immunotoxicity, DNA damage responses, and hypoxia-like toxicity were observed for PMA- and especially MUA-NPs. Together, these data reveal that Ag(+) ions do contribute to Ag NP-associated toxicity, particularly upon intracellular degradation. The different surface properties of the NPs however result in distinct toxicity profiles for the three NPs, indicating clear NP-associated effects.

摘要

Ag 纳米颗粒(NPs)的毒性效应仍然存在争议,其中 NPs 本身以及 NP 悬浮液中存在的游离 Ag(+)离子和 NP 细胞内腐蚀后的游离 Ag(+)离子各自的贡献尚未完全清楚。在这里,我们采用了一种新建立的方法,基于高内涵(HC)成像与高内涵基因表达研究相结合,来研究三种具有相同核心尺寸的 Ag NPs 与两种类型的培养细胞(原代人脐静脉内皮细胞(HUVEC)和鼠 C17.2 神经祖细胞)的相互作用。这些 NPs 分别用巯基十一酸(MUA)、十二胺改性聚异丁烯-马来酸酐(PMA)或聚乙二醇(PEG)-接枝 PMA 进行了修饰。作为对照,细胞也暴露于与各自 Ag NP 储备液中相同浓度的游离 Ag(+)离子。数据显示,NP 表面性质对细胞相互作用有明显影响。NP 的 PEG 化显著降低了其细胞摄取效率,而 MUA-NPs 在复杂的组织培养介质中更容易聚集。PEG-NPs 的毒性最低,这与它们减少的细胞摄取有关。MUA-NPs 的毒性最高,这是由于自噬、细胞膜损伤、线粒体损伤和细胞骨架变形引起的。在相似的细胞内 NP 水平下,PEG-NPs 诱导最高水平的活性氧(ROS),但与 MUA-NPs 和 PMA-NPs 不同,不会影响细胞细胞骨架。基因表达研究支持了上述发现,将自噬和细胞膜损伤相关坏死定义为主要毒性途径。此外,还观察到 PMA-和特别是 MUA-NPs 具有免疫毒性、DNA 损伤反应和缺氧样毒性。总的来说,这些数据表明 Ag(+)离子确实有助于 Ag NP 相关的毒性,尤其是在细胞内降解时。然而,由于 NPs 的不同表面性质,三种 NPs 的毒性谱也不同,这表明 NP 具有明显的相关效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验