文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于免疫应用的生物医学纳米材料:正在进行的研究和临床试验。

Biomedical nanomaterials for immunological applications: ongoing research and clinical trials.

作者信息

Lenders Vincent, Koutsoumpou Xanthippi, Sargsian Ara, Manshian Bella B

机构信息

NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium

出版信息

Nanoscale Adv. 2020 Aug 24;2(11):5046-5089. doi: 10.1039/d0na00478b. eCollection 2020 Nov 11.


DOI:10.1039/d0na00478b
PMID:36132021
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9418019/
Abstract

Research efforts on nanomaterial-based therapies for the treatment of autoimmune diseases and cancer have spiked and have made rapid progress over the past years. Nanomedicine has been shown to contribute significantly to overcome current therapeutic limitations, exhibiting advantages compared to conventional therapeutics, such as sustained drug release, delayed drug degradation and site-specific drug delivery. Multiple nanodrugs have reached the clinic, but translation is often hampered by either low targeting efficiency or undesired side effects. Nanomaterials, and especially inorganic nanoparticles, have gained criticism due to their potential toxic effects, including immunological alterations. However, many strategies have been attempted to improve the therapeutic efficacy of nanoparticles and exploit their unique properties for the treatment of inflammation and associated diseases. In this review, we elaborate on the immunomodulatory effects of nanomaterials, with a strong focus on the underlying mechanisms that lead to these specific immune responses. Nanomaterials to be discussed include inorganic nanoparticles such as gold, silica and silver, as well as organic nanomaterials such as polymer-, dendrimer-, liposomal- and protein-based nanoparticles. Furthermore, various approaches for tuning nanomaterials in order to enhance their efficacy and attenuate their immune stimulation or suppression, with respect to the therapeutic application, are described. Additionally, we illustrate how the acquired insights have been used to design immunotherapeutic strategies for a variety of diseases. The potential of nanomedicine-based therapeutic strategies in immunotherapy is further illustrated by an up to date overview of current clinical trials. Finally, recent efforts into enhancing immunogenic cell death through the use of nanoparticles are discussed.

摘要

在过去几年中,针对基于纳米材料的自身免疫性疾病和癌症治疗方法的研究工作激增,并取得了快速进展。纳米医学已被证明对克服当前的治疗局限性有显著贡献,与传统疗法相比具有优势,如药物持续释放、药物降解延迟和药物靶向递送。多种纳米药物已进入临床,但转化过程常常受到靶向效率低或不良副作用的阻碍。纳米材料,尤其是无机纳米颗粒,因其潜在的毒性作用,包括免疫改变,而受到批评。然而,人们已经尝试了许多策略来提高纳米颗粒的治疗效果,并利用其独特性质来治疗炎症及相关疾病。在这篇综述中,我们详细阐述了纳米材料的免疫调节作用,重点关注导致这些特定免疫反应的潜在机制。将要讨论的纳米材料包括无机纳米颗粒,如金、二氧化硅和银,以及有机纳米材料,如基于聚合物、树枝状大分子、脂质体和蛋白质的纳米颗粒。此外,还描述了为提高纳米材料的疗效并减弱其免疫刺激或抑制作用而进行的各种调节纳米材料的方法,以适应治疗应用。此外,我们还举例说明了如何将所获得的见解用于设计针对多种疾病的免疫治疗策略。当前临床试验的最新综述进一步说明了基于纳米医学的治疗策略在免疫治疗中的潜力。最后,讨论了最近通过使用纳米颗粒增强免疫原性细胞死亡的努力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/cff3b1c39941/d0na00478b-p4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/2c41de9f029f/d0na00478b-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/27ac57420395/d0na00478b-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/b7833efc4c94/d0na00478b-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/8f7a7d834fd6/d0na00478b-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/958d38a90954/d0na00478b-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/53345d70c641/d0na00478b-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/580159010195/d0na00478b-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/c25527fb8ec3/d0na00478b-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/26f31e08edee/d0na00478b-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/9eb171179dbb/d0na00478b-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/772e731313d6/d0na00478b-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/90168b0e32fc/d0na00478b-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/0eb6bf86e19a/d0na00478b-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/59bcf598f0a3/d0na00478b-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/1b4f5632f463/d0na00478b-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/54b3b39fafc1/d0na00478b-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/b7e9cc9866f4/d0na00478b-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/186c4412f871/d0na00478b-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/b6f6f7ee6360/d0na00478b-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/f8b874671f57/d0na00478b-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/c506e16f8265/d0na00478b-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/cff3b1c39941/d0na00478b-p4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/2c41de9f029f/d0na00478b-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/27ac57420395/d0na00478b-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/b7833efc4c94/d0na00478b-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/8f7a7d834fd6/d0na00478b-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/958d38a90954/d0na00478b-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/53345d70c641/d0na00478b-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/580159010195/d0na00478b-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/c25527fb8ec3/d0na00478b-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/26f31e08edee/d0na00478b-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/9eb171179dbb/d0na00478b-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/772e731313d6/d0na00478b-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/90168b0e32fc/d0na00478b-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/0eb6bf86e19a/d0na00478b-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/59bcf598f0a3/d0na00478b-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/1b4f5632f463/d0na00478b-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/54b3b39fafc1/d0na00478b-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/b7e9cc9866f4/d0na00478b-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/186c4412f871/d0na00478b-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/b6f6f7ee6360/d0na00478b-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/f8b874671f57/d0na00478b-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/c506e16f8265/d0na00478b-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e1/9418019/cff3b1c39941/d0na00478b-p4.jpg

相似文献

[1]
Biomedical nanomaterials for immunological applications: ongoing research and clinical trials.

Nanoscale Adv. 2020-8-24

[2]
Optically active organic and inorganic nanomaterials for biological imaging applications: A review.

Micron. 2023-9

[3]
The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes.

Curr Med Chem. 2018

[4]
Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic.

Curr Med Chem. 2018

[5]
Mesoporous silica nanoparticles for pulmonary drug delivery.

Adv Drug Deliv Rev. 2021-10

[6]
Silica-Based Nanoparticles for Biomedical Applications: From Nanocarriers to Biomodulators.

Acc Chem Res. 2020-8-18

[7]
Multifunctional inorganic nanomaterials for cancer photoimmunotherapy.

Cancer Commun (Lond). 2022-2

[8]
Nanomaterials in tumor immunotherapy: new strategies and challenges.

Mol Cancer. 2023-6-13

[9]
Theranostic Nanoparticles for RNA-Based Cancer Treatment.

Acc Chem Res. 2019-5-28

[10]
Inorganic nanomaterials with rapid clearance for biomedical applications.

Chem Soc Rev. 2021-8-7

引用本文的文献

[1]
Nanoengineered-based delivery systems to modulate CD4 T cell responses in cancer: emerging paradigms in cancer immunotherapy.

Front Pharmacol. 2025-8-11

[2]
Metal-organic frameworks activate the cGAS-STING pathway for cancer immunotherapy.

J Nanobiotechnology. 2025-8-21

[3]
Nanotechnology Approaches for Mitigating Biologic Immunogenicity: A Literature Review.

Pharmaceutics. 2025-7-7

[4]
Precision nanomedicine: navigating the tumor microenvironment for enhanced cancer immunotherapy and targeted drug delivery.

Mol Cancer. 2025-6-3

[5]
Neuroimmune interactions: The bridge between inflammatory bowel disease and the gut microbiota.

Clin Transl Med. 2025-5

[6]
Nanotechnology in Hematology: Enhancing Therapeutic Efficacy With Nanoparticles.

Health Sci Rep. 2025-5-19

[7]
Nanoparticles as Strategies for Modulating the Host's Response in Periodontitis Treatment.

Nanomaterials (Basel). 2025-3-21

[8]
Adjuvanticity of Tannic Acid-Modified Nanoparticles Improves Effectiveness of the Antiviral Response.

Int J Nanomedicine. 2025-4-1

[9]
Unravelling the complexity of CARPA: a review of emerging advancements in therapeutic strategies.

Arch Dermatol Res. 2025-2-19

[10]
From micro to macro, nanotechnology demystifies acute pancreatitis: a new generation of treatment options emerges.

J Nanobiotechnology. 2025-1-29

本文引用的文献

[1]
Silver nanoparticles modulate lipopolysaccharide-triggered Toll-like receptor signaling in immune-competent human cell lines.

Nanoscale Adv. 2020-1-15

[2]
Doxorubicin loaded ferritin nanoparticles for ferroptosis enhanced targeted killing of cancer cells.

RSC Adv. 2019-9-10

[3]
Protein Nanoparticles: Promising Platforms for Drug Delivery Applications.

ACS Biomater Sci Eng. 2018-12-10

[4]
Emerging Prospects for Nanoparticle-Enabled Cancer Immunotherapy.

J Immunol Res. 2020

[5]
Targeted immunomodulation of inflammatory monocytes across the blood-brain barrier by curcumin-loaded nanoparticles delays the progression of experimental autoimmune encephalomyelitis.

Biomaterials. 2020-7

[6]
Metal-Organic Framework Nanoparticles Induce Pyroptosis in Cells Controlled by the Extracellular pH.

Adv Mater. 2020-5

[7]
New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?

Int J Antimicrob Agents. 2020-3-12

[8]
Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma.

J Immunother Cancer. 2020-3

[9]
Cytotoxic effect of silica nanoparticles against hepatocellular carcinoma cells through necroptosis induction.

Toxicol Res (Camb). 2019-11-20

[10]
Improving the anti-inflammatory efficacy of dexamethasone in the treatment of rheumatoid arthritis with polymerized stealth liposomes as a delivery vehicle.

J Mater Chem B. 2020-3-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索