Choudhury Arup Jyoti, Gogoi Dolly, Chutia Joyanti, Kandimalla Raghuram, Kalita Sanjeeb, Kotoky Jibon, Chaudhari Yogesh B, Khan Mojibur R, Kalita Kasturi
Department of Physics, Tezpur University, Assam, India.
Physical Sciences Division, Institute of Advanced Study in Science and Technology, Assam, India.
Surgery. 2016 Feb;159(2):539-47. doi: 10.1016/j.surg.2015.07.022. Epub 2015 Aug 29.
The quest for developing silk fibroin as a biomaterial for drug release systems continues to draw research interest owing to its impressive mechanical properties as well as biocompatibility and biodegradability. The aim of this study is to develop low-temperature O2 plasma-treated muga (Antheraea assama) silk fibroin (AASF) yarn impregnated with amoxicillin trihydrate as controlled antibiotic-releasing suture (AASF/O2/AMOX) for preventing postoperative site bacterial infection and fast wound healing.
In this experimental study, AASF and AASF/O2/AMOX sutures are used to close the surgical wounds of adult male Wistar rats of 4 months old and weighing 200-230 g.
Surface hydrophilicity induced by O2 plasma results in an increase in drug-impregnation efficiency of AASF/O2 yarn by 16.7%. In vitro drug release profiles show continuous and prolonged release of AMOX from AASF/O2/AMOX yarn up to 336 hours. In vitro hemolysis assay reveals that O2 plasma treatment and subsequent impregnation of AMOX do not affect the heertetmocompatibility of AASF yarn. The AASF/O2/AMOX yarn proves to be effective for in vitro growth inhibition of Staphylococcus aureus and Escherichia coli, whereas AASF offers no antibacterial activity against both types of bacteria. In vivo histopathology studies and colony-forming unit count data revealed accelerated wound healing activity of AASF/O2/AMOX over AASF yarn through rapid synthesis and proliferation of collagen, hair follicle, and connective tissues.
Outcomes of this work clearly demonstrate the potential use of AASF/O2/AMOX yarn as a controlled antibiotic-releasing suture biomaterial for superficial surgical applications.
由于丝素蛋白具有令人印象深刻的机械性能以及生物相容性和生物降解性,将其开发为药物释放系统的生物材料的研究一直备受关注。本研究的目的是开发一种低温氧等离子体处理的穆加(柞蚕)丝素蛋白(AASF)纱线,该纱线浸渍有三水合阿莫西林,作为可控抗生素释放缝线(AASF/O2/AMOX),用于预防术后伤口部位细菌感染并促进伤口快速愈合。
在本实验研究中,使用AASF和AASF/O2/AMOX缝线闭合4月龄、体重200 - 230 g的成年雄性Wistar大鼠的手术伤口。
氧等离子体诱导的表面亲水性使AASF/O2纱线的药物浸渍效率提高了16.7%。体外药物释放曲线显示,AMOX从AASF/O2/AMOX纱线中持续且长时间释放,长达336小时。体外溶血试验表明,氧等离子体处理及随后的AMOX浸渍不影响AASF纱线的血液相容性。AASF/O2/AMOX纱线在体外对金黄色葡萄球菌和大肠杆菌的生长具有抑制作用,而AASF对这两种细菌均无抗菌活性。体内组织病理学研究和菌落形成单位计数数据显示,AASF/O2/AMOX纱线通过胶原蛋白、毛囊和结缔组织的快速合成和增殖,比AASF纱线具有更快的伤口愈合活性。
本研究结果清楚地表明,AASF/O2/AMOX纱线作为一种可控抗生素释放缝线生物材料,在浅表手术应用中具有潜在用途。